Step |
Hyp |
Ref |
Expression |
1 |
|
disjressuc2 |
|- ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) /\ A. u e. A ( [ u ] ( R |X. `' _E ) i^i [ A ] ( R |X. `' _E ) ) = (/) ) ) ) |
2 |
|
disjecxrncnvep |
|- ( ( u e. _V /\ A e. V ) -> ( ( [ u ] ( R |X. `' _E ) i^i [ A ] ( R |X. `' _E ) ) = (/) <-> ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
3 |
2
|
el2v1 |
|- ( A e. V -> ( ( [ u ] ( R |X. `' _E ) i^i [ A ] ( R |X. `' _E ) ) = (/) <-> ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
4 |
3
|
ralbidv |
|- ( A e. V -> ( A. u e. A ( [ u ] ( R |X. `' _E ) i^i [ A ] ( R |X. `' _E ) ) = (/) <-> A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
5 |
4
|
anbi2d |
|- ( A e. V -> ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) /\ A. u e. A ( [ u ] ( R |X. `' _E ) i^i [ A ] ( R |X. `' _E ) ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) ) |
6 |
1 5
|
bitrd |
|- ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) ) |