| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snssi |
|- ( (/) e. A -> { (/) } C_ A ) |
| 2 |
|
ssequn2 |
|- ( { (/) } C_ A <-> ( A u. { (/) } ) = A ) |
| 3 |
1 2
|
sylib |
|- ( (/) e. A -> ( A u. { (/) } ) = A ) |
| 4 |
3
|
disjeq1d |
|- ( (/) e. A -> ( Disj_ x e. ( A u. { (/) } ) x <-> Disj_ x e. A x ) ) |
| 5 |
4
|
biimparc |
|- ( ( Disj_ x e. A x /\ (/) e. A ) -> Disj_ x e. ( A u. { (/) } ) x ) |
| 6 |
|
simpl |
|- ( ( Disj_ x e. A x /\ -. (/) e. A ) -> Disj_ x e. A x ) |
| 7 |
|
in0 |
|- ( U_ x e. A x i^i (/) ) = (/) |
| 8 |
7
|
a1i |
|- ( ( Disj_ x e. A x /\ -. (/) e. A ) -> ( U_ x e. A x i^i (/) ) = (/) ) |
| 9 |
|
0ex |
|- (/) e. _V |
| 10 |
|
id |
|- ( x = (/) -> x = (/) ) |
| 11 |
10
|
disjunsn |
|- ( ( (/) e. _V /\ -. (/) e. A ) -> ( Disj_ x e. ( A u. { (/) } ) x <-> ( Disj_ x e. A x /\ ( U_ x e. A x i^i (/) ) = (/) ) ) ) |
| 12 |
9 11
|
mpan |
|- ( -. (/) e. A -> ( Disj_ x e. ( A u. { (/) } ) x <-> ( Disj_ x e. A x /\ ( U_ x e. A x i^i (/) ) = (/) ) ) ) |
| 13 |
12
|
adantl |
|- ( ( Disj_ x e. A x /\ -. (/) e. A ) -> ( Disj_ x e. ( A u. { (/) } ) x <-> ( Disj_ x e. A x /\ ( U_ x e. A x i^i (/) ) = (/) ) ) ) |
| 14 |
6 8 13
|
mpbir2and |
|- ( ( Disj_ x e. A x /\ -. (/) e. A ) -> Disj_ x e. ( A u. { (/) } ) x ) |
| 15 |
5 14
|
pm2.61dan |
|- ( Disj_ x e. A x -> Disj_ x e. ( A u. { (/) } ) x ) |