Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | disjuniel.1 | |- ( ph -> Disj_ x e. A x ) |
|
disjuniel.2 | |- ( ph -> B C_ A ) |
||
disjuniel.3 | |- ( ph -> C e. ( A \ B ) ) |
||
Assertion | disjuniel | |- ( ph -> ( U. B i^i C ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjuniel.1 | |- ( ph -> Disj_ x e. A x ) |
|
2 | disjuniel.2 | |- ( ph -> B C_ A ) |
|
3 | disjuniel.3 | |- ( ph -> C e. ( A \ B ) ) |
|
4 | uniiun | |- U. B = U_ x e. B x |
|
5 | 4 | ineq1i | |- ( U. B i^i C ) = ( U_ x e. B x i^i C ) |
6 | id | |- ( x = C -> x = C ) |
|
7 | 1 6 2 3 | disjiunel | |- ( ph -> ( U_ x e. B x i^i C ) = (/) ) |
8 | 5 7 | syl5eq | |- ( ph -> ( U. B i^i C ) = (/) ) |