| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							disjunsn.s | 
							 |-  ( x = M -> B = C )  | 
						
						
							| 2 | 
							
								
							 | 
							disjors | 
							 |-  ( Disj_ x e. ( A u. { M } ) B <-> A. i e. ( A u. { M } ) A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) | 
						
						
							| 3 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( i = M -> ( i = j <-> M = j ) )  | 
						
						
							| 4 | 
							
								
							 | 
							csbeq1 | 
							 |-  ( i = M -> [_ i / x ]_ B = [_ M / x ]_ B )  | 
						
						
							| 5 | 
							
								4
							 | 
							ineq1d | 
							 |-  ( i = M -> ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = ( [_ M / x ]_ B i^i [_ j / x ]_ B ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqeq1d | 
							 |-  ( i = M -> ( ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							orbi12d | 
							 |-  ( i = M -> ( ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ralbidv | 
							 |-  ( i = M -> ( A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) | 
						
						
							| 9 | 
							
								8
							 | 
							ralunsn | 
							 |-  ( M e. V -> ( A. i e. ( A u. { M } ) A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. i e. A A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) | 
						
						
							| 10 | 
							
								2 9
							 | 
							bitrid | 
							 |-  ( M e. V -> ( Disj_ x e. ( A u. { M } ) B <-> ( A. i e. A A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) | 
						
						
							| 11 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( j = M -> ( i = j <-> i = M ) )  | 
						
						
							| 12 | 
							
								
							 | 
							csbeq1 | 
							 |-  ( j = M -> [_ j / x ]_ B = [_ M / x ]_ B )  | 
						
						
							| 13 | 
							
								12
							 | 
							ineq2d | 
							 |-  ( j = M -> ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = ( [_ i / x ]_ B i^i [_ M / x ]_ B ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqeq1d | 
							 |-  ( j = M -> ( ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							orbi12d | 
							 |-  ( j = M -> ( ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ralunsn | 
							 |-  ( M e. V -> ( A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) ) | 
						
						
							| 17 | 
							
								16
							 | 
							ralbidv | 
							 |-  ( M e. V -> ( A. i e. A A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) ) | 
						
						
							| 18 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( j = M -> ( M = j <-> M = M ) )  | 
						
						
							| 19 | 
							
								12
							 | 
							ineq2d | 
							 |-  ( j = M -> ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = ( [_ M / x ]_ B i^i [_ M / x ]_ B ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							eqeq1d | 
							 |-  ( j = M -> ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							orbi12d | 
							 |-  ( j = M -> ( ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( M = M \/ ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							ralunsn | 
							 |-  ( M e. V -> ( A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( M = M \/ ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) ) | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							 |-  M = M  | 
						
						
							| 24 | 
							
								23
							 | 
							orci | 
							 |-  ( M = M \/ ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) )  | 
						
						
							| 25 | 
							
								24
							 | 
							biantru | 
							 |-  ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( M = M \/ ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) )  | 
						
						
							| 26 | 
							
								22 25
							 | 
							bitr4di | 
							 |-  ( M e. V -> ( A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) | 
						
						
							| 27 | 
							
								17 26
							 | 
							anbi12d | 
							 |-  ( M e. V -> ( ( A. i e. A A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) <-> ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) | 
						
						
							| 28 | 
							
								10 27
							 | 
							bitrd | 
							 |-  ( M e. V -> ( Disj_ x e. ( A u. { M } ) B <-> ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) | 
						
						
							| 29 | 
							
								
							 | 
							r19.26 | 
							 |-  ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) <-> ( A. i e. A A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							disjors | 
							 |-  ( Disj_ x e. A B <-> A. i e. A A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							anbi1i | 
							 |-  ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) <-> ( A. i e. A A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							bitr4i | 
							 |-  ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) <-> ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							anbi1i | 
							 |-  ( ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) <-> ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) )  | 
						
						
							| 34 | 
							
								28 33
							 | 
							bitrdi | 
							 |-  ( M e. V -> ( Disj_ x e. ( A u. { M } ) B <-> ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) | 
						
						
							| 35 | 
							
								34
							 | 
							adantr | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( Disj_ x e. ( A u. { M } ) B <-> ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) | 
						
						
							| 36 | 
							
								
							 | 
							orcom | 
							 |-  ( ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ i = M ) <-> ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							ralbii | 
							 |-  ( A. i e. A ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ i = M ) <-> A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							r19.30 | 
							 |-  ( A. i e. A ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ i = M ) -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ E. i e. A i = M ) )  | 
						
						
							| 39 | 
							
								
							 | 
							risset | 
							 |-  ( M e. A <-> E. i e. A i = M )  | 
						
						
							| 40 | 
							
								
							 | 
							biorf | 
							 |-  ( -. E. i e. A i = M -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( E. i e. A i = M \/ A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							sylnbi | 
							 |-  ( -. M e. A -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( E. i e. A i = M \/ A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantl | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( E. i e. A i = M \/ A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							orcom | 
							 |-  ( ( E. i e. A i = M \/ A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) <-> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ E. i e. A i = M ) )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							bitrdi | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ E. i e. A i = M ) ) )  | 
						
						
							| 45 | 
							
								38 44
							 | 
							imbitrrid | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ i = M ) -> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) )  | 
						
						
							| 46 | 
							
								37 45
							 | 
							biimtrrid | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) -> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) )  | 
						
						
							| 47 | 
							
								
							 | 
							olc | 
							 |-  ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) -> ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							ralimi | 
							 |-  ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) -> A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							impbid1 | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) <-> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							nfv | 
							 |-  F/ i ( B i^i C ) = (/)  | 
						
						
							| 51 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ x [_ i / x ]_ B  | 
						
						
							| 52 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x C  | 
						
						
							| 53 | 
							
								51 52
							 | 
							nfin | 
							 |-  F/_ x ( [_ i / x ]_ B i^i C )  | 
						
						
							| 54 | 
							
								53
							 | 
							nfeq1 | 
							 |-  F/ x ( [_ i / x ]_ B i^i C ) = (/)  | 
						
						
							| 55 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( x = i -> B = [_ i / x ]_ B )  | 
						
						
							| 56 | 
							
								55
							 | 
							ineq1d | 
							 |-  ( x = i -> ( B i^i C ) = ( [_ i / x ]_ B i^i C ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							eqeq1d | 
							 |-  ( x = i -> ( ( B i^i C ) = (/) <-> ( [_ i / x ]_ B i^i C ) = (/) ) )  | 
						
						
							| 58 | 
							
								50 54 57
							 | 
							cbvralw | 
							 |-  ( A. x e. A ( B i^i C ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i C ) = (/) )  | 
						
						
							| 59 | 
							
								58
							 | 
							a1i | 
							 |-  ( M e. V -> ( A. x e. A ( B i^i C ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i C ) = (/) ) )  | 
						
						
							| 60 | 
							
								
							 | 
							ss0b | 
							 |-  ( U_ x e. A ( B i^i C ) C_ (/) <-> U_ x e. A ( B i^i C ) = (/) )  | 
						
						
							| 61 | 
							
								
							 | 
							iunss | 
							 |-  ( U_ x e. A ( B i^i C ) C_ (/) <-> A. x e. A ( B i^i C ) C_ (/) )  | 
						
						
							| 62 | 
							
								
							 | 
							iunin1 | 
							 |-  U_ x e. A ( B i^i C ) = ( U_ x e. A B i^i C )  | 
						
						
							| 63 | 
							
								62
							 | 
							eqeq1i | 
							 |-  ( U_ x e. A ( B i^i C ) = (/) <-> ( U_ x e. A B i^i C ) = (/) )  | 
						
						
							| 64 | 
							
								60 61 63
							 | 
							3bitr3ri | 
							 |-  ( ( U_ x e. A B i^i C ) = (/) <-> A. x e. A ( B i^i C ) C_ (/) )  | 
						
						
							| 65 | 
							
								
							 | 
							ss0b | 
							 |-  ( ( B i^i C ) C_ (/) <-> ( B i^i C ) = (/) )  | 
						
						
							| 66 | 
							
								65
							 | 
							ralbii | 
							 |-  ( A. x e. A ( B i^i C ) C_ (/) <-> A. x e. A ( B i^i C ) = (/) )  | 
						
						
							| 67 | 
							
								64 66
							 | 
							bitri | 
							 |-  ( ( U_ x e. A B i^i C ) = (/) <-> A. x e. A ( B i^i C ) = (/) )  | 
						
						
							| 68 | 
							
								67
							 | 
							a1i | 
							 |-  ( M e. V -> ( ( U_ x e. A B i^i C ) = (/) <-> A. x e. A ( B i^i C ) = (/) ) )  | 
						
						
							| 69 | 
							
								
							 | 
							nfcvd | 
							 |-  ( M e. V -> F/_ x C )  | 
						
						
							| 70 | 
							
								69 1
							 | 
							csbiegf | 
							 |-  ( M e. V -> [_ M / x ]_ B = C )  | 
						
						
							| 71 | 
							
								70
							 | 
							ineq2d | 
							 |-  ( M e. V -> ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = ( [_ i / x ]_ B i^i C ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							eqeq1d | 
							 |-  ( M e. V -> ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( [_ i / x ]_ B i^i C ) = (/) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							ralbidv | 
							 |-  ( M e. V -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i C ) = (/) ) )  | 
						
						
							| 74 | 
							
								59 68 73
							 | 
							3bitr4d | 
							 |-  ( M e. V -> ( ( U_ x e. A B i^i C ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							adantr | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( ( U_ x e. A B i^i C ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) )  | 
						
						
							| 76 | 
							
								49 75
							 | 
							bitr4d | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) <-> ( U_ x e. A B i^i C ) = (/) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							anbi2d | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) ) )  | 
						
						
							| 78 | 
							
								
							 | 
							orcom | 
							 |-  ( ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ M = j ) <-> ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							ralbii | 
							 |-  ( A. j e. A ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ M = j ) <-> A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 80 | 
							
								
							 | 
							r19.30 | 
							 |-  ( A. j e. A ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ M = j ) -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ E. j e. A M = j ) )  | 
						
						
							| 81 | 
							
								
							 | 
							clel5 | 
							 |-  ( M e. A <-> E. j e. A M = j )  | 
						
						
							| 82 | 
							
								
							 | 
							biorf | 
							 |-  ( -. E. j e. A M = j -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( E. j e. A M = j \/ A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) )  | 
						
						
							| 83 | 
							
								81 82
							 | 
							sylnbi | 
							 |-  ( -. M e. A -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( E. j e. A M = j \/ A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							adantl | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( E. j e. A M = j \/ A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) )  | 
						
						
							| 85 | 
							
								
							 | 
							orcom | 
							 |-  ( ( E. j e. A M = j \/ A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ E. j e. A M = j ) )  | 
						
						
							| 86 | 
							
								84 85
							 | 
							bitrdi | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ E. j e. A M = j ) ) )  | 
						
						
							| 87 | 
							
								80 86
							 | 
							imbitrrid | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ M = j ) -> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 88 | 
							
								79 87
							 | 
							biimtrrid | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) -> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 89 | 
							
								
							 | 
							olc | 
							 |-  ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) -> ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							ralimi | 
							 |-  ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) -> A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 91 | 
							
								88 90
							 | 
							impbid1 | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							nfv | 
							 |-  F/ j ( B i^i C ) = (/)  | 
						
						
							| 93 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ x [_ j / x ]_ B  | 
						
						
							| 94 | 
							
								93 52
							 | 
							nfin | 
							 |-  F/_ x ( [_ j / x ]_ B i^i C )  | 
						
						
							| 95 | 
							
								94
							 | 
							nfeq1 | 
							 |-  F/ x ( [_ j / x ]_ B i^i C ) = (/)  | 
						
						
							| 96 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( x = j -> B = [_ j / x ]_ B )  | 
						
						
							| 97 | 
							
								96
							 | 
							ineq1d | 
							 |-  ( x = j -> ( B i^i C ) = ( [_ j / x ]_ B i^i C ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							eqeq1d | 
							 |-  ( x = j -> ( ( B i^i C ) = (/) <-> ( [_ j / x ]_ B i^i C ) = (/) ) )  | 
						
						
							| 99 | 
							
								92 95 98
							 | 
							cbvralw | 
							 |-  ( A. x e. A ( B i^i C ) = (/) <-> A. j e. A ( [_ j / x ]_ B i^i C ) = (/) )  | 
						
						
							| 100 | 
							
								99
							 | 
							a1i | 
							 |-  ( M e. V -> ( A. x e. A ( B i^i C ) = (/) <-> A. j e. A ( [_ j / x ]_ B i^i C ) = (/) ) )  | 
						
						
							| 101 | 
							
								
							 | 
							incom | 
							 |-  ( [_ j / x ]_ B i^i C ) = ( C i^i [_ j / x ]_ B )  | 
						
						
							| 102 | 
							
								101
							 | 
							eqeq1i | 
							 |-  ( ( [_ j / x ]_ B i^i C ) = (/) <-> ( C i^i [_ j / x ]_ B ) = (/) )  | 
						
						
							| 103 | 
							
								102
							 | 
							ralbii | 
							 |-  ( A. j e. A ( [_ j / x ]_ B i^i C ) = (/) <-> A. j e. A ( C i^i [_ j / x ]_ B ) = (/) )  | 
						
						
							| 104 | 
							
								100 103
							 | 
							bitrdi | 
							 |-  ( M e. V -> ( A. x e. A ( B i^i C ) = (/) <-> A. j e. A ( C i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 105 | 
							
								70
							 | 
							ineq1d | 
							 |-  ( M e. V -> ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = ( C i^i [_ j / x ]_ B ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							eqeq1d | 
							 |-  ( M e. V -> ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( C i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							ralbidv | 
							 |-  ( M e. V -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> A. j e. A ( C i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 108 | 
							
								104 68 107
							 | 
							3bitr4d | 
							 |-  ( M e. V -> ( ( U_ x e. A B i^i C ) = (/) <-> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 109 | 
							
								108
							 | 
							adantr | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( ( U_ x e. A B i^i C ) = (/) <-> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) )  | 
						
						
							| 110 | 
							
								91 109
							 | 
							bitr4d | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( U_ x e. A B i^i C ) = (/) ) )  | 
						
						
							| 111 | 
							
								77 110
							 | 
							anbi12d | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) <-> ( ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) /\ ( U_ x e. A B i^i C ) = (/) ) ) )  | 
						
						
							| 112 | 
							
								
							 | 
							anass | 
							 |-  ( ( ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) /\ ( U_ x e. A B i^i C ) = (/) ) <-> ( Disj_ x e. A B /\ ( ( U_ x e. A B i^i C ) = (/) /\ ( U_ x e. A B i^i C ) = (/) ) ) )  | 
						
						
							| 113 | 
							
								
							 | 
							anidm | 
							 |-  ( ( ( U_ x e. A B i^i C ) = (/) /\ ( U_ x e. A B i^i C ) = (/) ) <-> ( U_ x e. A B i^i C ) = (/) )  | 
						
						
							| 114 | 
							
								113
							 | 
							anbi2i | 
							 |-  ( ( Disj_ x e. A B /\ ( ( U_ x e. A B i^i C ) = (/) /\ ( U_ x e. A B i^i C ) = (/) ) ) <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) )  | 
						
						
							| 115 | 
							
								112 114
							 | 
							bitri | 
							 |-  ( ( ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) /\ ( U_ x e. A B i^i C ) = (/) ) <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) )  | 
						
						
							| 116 | 
							
								111 115
							 | 
							bitrdi | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) ) )  | 
						
						
							| 117 | 
							
								35 116
							 | 
							bitrd | 
							 |-  ( ( M e. V /\ -. M e. A ) -> ( Disj_ x e. ( A u. { M } ) B <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) ) ) |