Step |
Hyp |
Ref |
Expression |
1 |
|
disjunsn.s |
|- ( x = M -> B = C ) |
2 |
|
disjors |
|- ( Disj_ x e. ( A u. { M } ) B <-> A. i e. ( A u. { M } ) A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
3 |
|
eqeq1 |
|- ( i = M -> ( i = j <-> M = j ) ) |
4 |
|
csbeq1 |
|- ( i = M -> [_ i / x ]_ B = [_ M / x ]_ B ) |
5 |
4
|
ineq1d |
|- ( i = M -> ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = ( [_ M / x ]_ B i^i [_ j / x ]_ B ) ) |
6 |
5
|
eqeq1d |
|- ( i = M -> ( ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
7 |
3 6
|
orbi12d |
|- ( i = M -> ( ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
8 |
7
|
ralbidv |
|- ( i = M -> ( A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
9 |
8
|
ralunsn |
|- ( M e. V -> ( A. i e. ( A u. { M } ) A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. i e. A A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) |
10 |
2 9
|
syl5bb |
|- ( M e. V -> ( Disj_ x e. ( A u. { M } ) B <-> ( A. i e. A A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) |
11 |
|
eqeq2 |
|- ( j = M -> ( i = j <-> i = M ) ) |
12 |
|
csbeq1 |
|- ( j = M -> [_ j / x ]_ B = [_ M / x ]_ B ) |
13 |
12
|
ineq2d |
|- ( j = M -> ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = ( [_ i / x ]_ B i^i [_ M / x ]_ B ) ) |
14 |
13
|
eqeq1d |
|- ( j = M -> ( ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
15 |
11 14
|
orbi12d |
|- ( j = M -> ( ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
16 |
15
|
ralunsn |
|- ( M e. V -> ( A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) ) |
17 |
16
|
ralbidv |
|- ( M e. V -> ( A. i e. A A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) ) |
18 |
|
eqeq2 |
|- ( j = M -> ( M = j <-> M = M ) ) |
19 |
12
|
ineq2d |
|- ( j = M -> ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = ( [_ M / x ]_ B i^i [_ M / x ]_ B ) ) |
20 |
19
|
eqeq1d |
|- ( j = M -> ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
21 |
18 20
|
orbi12d |
|- ( j = M -> ( ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( M = M \/ ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
22 |
21
|
ralunsn |
|- ( M e. V -> ( A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( M = M \/ ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) ) |
23 |
|
eqid |
|- M = M |
24 |
23
|
orci |
|- ( M = M \/ ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) |
25 |
24
|
biantru |
|- ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( M = M \/ ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
26 |
22 25
|
bitr4di |
|- ( M e. V -> ( A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
27 |
17 26
|
anbi12d |
|- ( M e. V -> ( ( A. i e. A A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) <-> ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) |
28 |
10 27
|
bitrd |
|- ( M e. V -> ( Disj_ x e. ( A u. { M } ) B <-> ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) |
29 |
|
r19.26 |
|- ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) <-> ( A. i e. A A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
30 |
|
disjors |
|- ( Disj_ x e. A B <-> A. i e. A A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
31 |
30
|
anbi1i |
|- ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) <-> ( A. i e. A A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
32 |
29 31
|
bitr4i |
|- ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) <-> ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
33 |
32
|
anbi1i |
|- ( ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) <-> ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
34 |
28 33
|
bitrdi |
|- ( M e. V -> ( Disj_ x e. ( A u. { M } ) B <-> ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) |
35 |
34
|
adantr |
|- ( ( M e. V /\ -. M e. A ) -> ( Disj_ x e. ( A u. { M } ) B <-> ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) |
36 |
|
orcom |
|- ( ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ i = M ) <-> ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
37 |
36
|
ralbii |
|- ( A. i e. A ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ i = M ) <-> A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
38 |
|
r19.30 |
|- ( A. i e. A ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ i = M ) -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ E. i e. A i = M ) ) |
39 |
|
risset |
|- ( M e. A <-> E. i e. A i = M ) |
40 |
|
biorf |
|- ( -. E. i e. A i = M -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( E. i e. A i = M \/ A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
41 |
39 40
|
sylnbi |
|- ( -. M e. A -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( E. i e. A i = M \/ A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
42 |
41
|
adantl |
|- ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( E. i e. A i = M \/ A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
43 |
|
orcom |
|- ( ( E. i e. A i = M \/ A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) <-> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ E. i e. A i = M ) ) |
44 |
42 43
|
bitrdi |
|- ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ E. i e. A i = M ) ) ) |
45 |
38 44
|
syl5ibr |
|- ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ i = M ) -> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
46 |
37 45
|
syl5bir |
|- ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) -> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
47 |
|
olc |
|- ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) -> ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
48 |
47
|
ralimi |
|- ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) -> A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
49 |
46 48
|
impbid1 |
|- ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) <-> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
50 |
|
nfv |
|- F/ i ( B i^i C ) = (/) |
51 |
|
nfcsb1v |
|- F/_ x [_ i / x ]_ B |
52 |
|
nfcv |
|- F/_ x C |
53 |
51 52
|
nfin |
|- F/_ x ( [_ i / x ]_ B i^i C ) |
54 |
53
|
nfeq1 |
|- F/ x ( [_ i / x ]_ B i^i C ) = (/) |
55 |
|
csbeq1a |
|- ( x = i -> B = [_ i / x ]_ B ) |
56 |
55
|
ineq1d |
|- ( x = i -> ( B i^i C ) = ( [_ i / x ]_ B i^i C ) ) |
57 |
56
|
eqeq1d |
|- ( x = i -> ( ( B i^i C ) = (/) <-> ( [_ i / x ]_ B i^i C ) = (/) ) ) |
58 |
50 54 57
|
cbvralw |
|- ( A. x e. A ( B i^i C ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i C ) = (/) ) |
59 |
58
|
a1i |
|- ( M e. V -> ( A. x e. A ( B i^i C ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i C ) = (/) ) ) |
60 |
|
ss0b |
|- ( U_ x e. A ( B i^i C ) C_ (/) <-> U_ x e. A ( B i^i C ) = (/) ) |
61 |
|
iunss |
|- ( U_ x e. A ( B i^i C ) C_ (/) <-> A. x e. A ( B i^i C ) C_ (/) ) |
62 |
|
iunin1 |
|- U_ x e. A ( B i^i C ) = ( U_ x e. A B i^i C ) |
63 |
62
|
eqeq1i |
|- ( U_ x e. A ( B i^i C ) = (/) <-> ( U_ x e. A B i^i C ) = (/) ) |
64 |
60 61 63
|
3bitr3ri |
|- ( ( U_ x e. A B i^i C ) = (/) <-> A. x e. A ( B i^i C ) C_ (/) ) |
65 |
|
ss0b |
|- ( ( B i^i C ) C_ (/) <-> ( B i^i C ) = (/) ) |
66 |
65
|
ralbii |
|- ( A. x e. A ( B i^i C ) C_ (/) <-> A. x e. A ( B i^i C ) = (/) ) |
67 |
64 66
|
bitri |
|- ( ( U_ x e. A B i^i C ) = (/) <-> A. x e. A ( B i^i C ) = (/) ) |
68 |
67
|
a1i |
|- ( M e. V -> ( ( U_ x e. A B i^i C ) = (/) <-> A. x e. A ( B i^i C ) = (/) ) ) |
69 |
|
nfcvd |
|- ( M e. V -> F/_ x C ) |
70 |
69 1
|
csbiegf |
|- ( M e. V -> [_ M / x ]_ B = C ) |
71 |
70
|
ineq2d |
|- ( M e. V -> ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = ( [_ i / x ]_ B i^i C ) ) |
72 |
71
|
eqeq1d |
|- ( M e. V -> ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( [_ i / x ]_ B i^i C ) = (/) ) ) |
73 |
72
|
ralbidv |
|- ( M e. V -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i C ) = (/) ) ) |
74 |
59 68 73
|
3bitr4d |
|- ( M e. V -> ( ( U_ x e. A B i^i C ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
75 |
74
|
adantr |
|- ( ( M e. V /\ -. M e. A ) -> ( ( U_ x e. A B i^i C ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
76 |
49 75
|
bitr4d |
|- ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) <-> ( U_ x e. A B i^i C ) = (/) ) ) |
77 |
76
|
anbi2d |
|- ( ( M e. V /\ -. M e. A ) -> ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) ) ) |
78 |
|
orcom |
|- ( ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ M = j ) <-> ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
79 |
78
|
ralbii |
|- ( A. j e. A ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ M = j ) <-> A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
80 |
|
r19.30 |
|- ( A. j e. A ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ M = j ) -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ E. j e. A M = j ) ) |
81 |
|
clel5 |
|- ( M e. A <-> E. j e. A M = j ) |
82 |
|
biorf |
|- ( -. E. j e. A M = j -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( E. j e. A M = j \/ A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
83 |
81 82
|
sylnbi |
|- ( -. M e. A -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( E. j e. A M = j \/ A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
84 |
83
|
adantl |
|- ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( E. j e. A M = j \/ A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
85 |
|
orcom |
|- ( ( E. j e. A M = j \/ A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ E. j e. A M = j ) ) |
86 |
84 85
|
bitrdi |
|- ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ E. j e. A M = j ) ) ) |
87 |
80 86
|
syl5ibr |
|- ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ M = j ) -> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
88 |
79 87
|
syl5bir |
|- ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) -> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
89 |
|
olc |
|- ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) -> ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
90 |
89
|
ralimi |
|- ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) -> A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
91 |
88 90
|
impbid1 |
|- ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
92 |
|
nfv |
|- F/ j ( B i^i C ) = (/) |
93 |
|
nfcsb1v |
|- F/_ x [_ j / x ]_ B |
94 |
93 52
|
nfin |
|- F/_ x ( [_ j / x ]_ B i^i C ) |
95 |
94
|
nfeq1 |
|- F/ x ( [_ j / x ]_ B i^i C ) = (/) |
96 |
|
csbeq1a |
|- ( x = j -> B = [_ j / x ]_ B ) |
97 |
96
|
ineq1d |
|- ( x = j -> ( B i^i C ) = ( [_ j / x ]_ B i^i C ) ) |
98 |
97
|
eqeq1d |
|- ( x = j -> ( ( B i^i C ) = (/) <-> ( [_ j / x ]_ B i^i C ) = (/) ) ) |
99 |
92 95 98
|
cbvralw |
|- ( A. x e. A ( B i^i C ) = (/) <-> A. j e. A ( [_ j / x ]_ B i^i C ) = (/) ) |
100 |
99
|
a1i |
|- ( M e. V -> ( A. x e. A ( B i^i C ) = (/) <-> A. j e. A ( [_ j / x ]_ B i^i C ) = (/) ) ) |
101 |
|
incom |
|- ( [_ j / x ]_ B i^i C ) = ( C i^i [_ j / x ]_ B ) |
102 |
101
|
eqeq1i |
|- ( ( [_ j / x ]_ B i^i C ) = (/) <-> ( C i^i [_ j / x ]_ B ) = (/) ) |
103 |
102
|
ralbii |
|- ( A. j e. A ( [_ j / x ]_ B i^i C ) = (/) <-> A. j e. A ( C i^i [_ j / x ]_ B ) = (/) ) |
104 |
100 103
|
bitrdi |
|- ( M e. V -> ( A. x e. A ( B i^i C ) = (/) <-> A. j e. A ( C i^i [_ j / x ]_ B ) = (/) ) ) |
105 |
70
|
ineq1d |
|- ( M e. V -> ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = ( C i^i [_ j / x ]_ B ) ) |
106 |
105
|
eqeq1d |
|- ( M e. V -> ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( C i^i [_ j / x ]_ B ) = (/) ) ) |
107 |
106
|
ralbidv |
|- ( M e. V -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> A. j e. A ( C i^i [_ j / x ]_ B ) = (/) ) ) |
108 |
104 68 107
|
3bitr4d |
|- ( M e. V -> ( ( U_ x e. A B i^i C ) = (/) <-> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
109 |
108
|
adantr |
|- ( ( M e. V /\ -. M e. A ) -> ( ( U_ x e. A B i^i C ) = (/) <-> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
110 |
91 109
|
bitr4d |
|- ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( U_ x e. A B i^i C ) = (/) ) ) |
111 |
77 110
|
anbi12d |
|- ( ( M e. V /\ -. M e. A ) -> ( ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) <-> ( ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) /\ ( U_ x e. A B i^i C ) = (/) ) ) ) |
112 |
|
anass |
|- ( ( ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) /\ ( U_ x e. A B i^i C ) = (/) ) <-> ( Disj_ x e. A B /\ ( ( U_ x e. A B i^i C ) = (/) /\ ( U_ x e. A B i^i C ) = (/) ) ) ) |
113 |
|
anidm |
|- ( ( ( U_ x e. A B i^i C ) = (/) /\ ( U_ x e. A B i^i C ) = (/) ) <-> ( U_ x e. A B i^i C ) = (/) ) |
114 |
113
|
anbi2i |
|- ( ( Disj_ x e. A B /\ ( ( U_ x e. A B i^i C ) = (/) /\ ( U_ x e. A B i^i C ) = (/) ) ) <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) ) |
115 |
112 114
|
bitri |
|- ( ( ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) /\ ( U_ x e. A B i^i C ) = (/) ) <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) ) |
116 |
111 115
|
bitrdi |
|- ( ( M e. V /\ -. M e. A ) -> ( ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) ) ) |
117 |
35 116
|
bitrd |
|- ( ( M e. V /\ -. M e. A ) -> ( Disj_ x e. ( A u. { M } ) B <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) ) ) |