Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjxsn | |- Disj_ x e. { A } B | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfdisj2 |  |-  ( Disj_ x e. { A } B <-> A. y E* x ( x e. { A } /\ y e. B ) ) | 
						|
| 2 | moeq | |- E* x x = A  | 
						|
| 3 | elsni |  |-  ( x e. { A } -> x = A ) | 
						|
| 4 | 3 | adantr |  |-  ( ( x e. { A } /\ y e. B ) -> x = A ) | 
						
| 5 | 4 | moimi |  |-  ( E* x x = A -> E* x ( x e. { A } /\ y e. B ) ) | 
						
| 6 | 2 5 | ax-mp |  |-  E* x ( x e. { A } /\ y e. B ) | 
						
| 7 | 1 6 | mpgbir |  |-  Disj_ x e. { A } B |