Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | disjxsn | |- Disj_ x e. { A } B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 | |- ( Disj_ x e. { A } B <-> A. y E* x ( x e. { A } /\ y e. B ) ) |
|
2 | moeq | |- E* x x = A |
|
3 | elsni | |- ( x e. { A } -> x = A ) |
|
4 | 3 | adantr | |- ( ( x e. { A } /\ y e. B ) -> x = A ) |
5 | 4 | moimi | |- ( E* x x = A -> E* x ( x e. { A } /\ y e. B ) ) |
6 | 2 5 | ax-mp | |- E* x ( x e. { A } /\ y e. B ) |
7 | 1 6 | mpgbir | |- Disj_ x e. { A } B |