Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnextprop.x |
|- X = ( ( N + 1 ) WWalksN G ) |
2 |
|
wwlksnextprop.e |
|- E = ( Edg ` G ) |
3 |
|
wwlksnextprop.y |
|- Y = { w e. ( N WWalksN G ) | ( w ` 0 ) = P } |
4 |
|
simp1 |
|- ( ( ( x prefix M ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) -> ( x prefix M ) = y ) |
5 |
4
|
a1i |
|- ( x e. X -> ( ( ( x prefix M ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) -> ( x prefix M ) = y ) ) |
6 |
5
|
ss2rabi |
|- { x e. X | ( ( x prefix M ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) } C_ { x e. X | ( x prefix M ) = y } |
7 |
|
wwlkssswwlksn |
|- ( ( N + 1 ) WWalksN G ) C_ ( WWalks ` G ) |
8 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
9 |
8
|
wwlkssswrd |
|- ( WWalks ` G ) C_ Word ( Vtx ` G ) |
10 |
7 9
|
sstri |
|- ( ( N + 1 ) WWalksN G ) C_ Word ( Vtx ` G ) |
11 |
1 10
|
eqsstri |
|- X C_ Word ( Vtx ` G ) |
12 |
|
rabss2 |
|- ( X C_ Word ( Vtx ` G ) -> { x e. X | ( x prefix M ) = y } C_ { x e. Word ( Vtx ` G ) | ( x prefix M ) = y } ) |
13 |
11 12
|
ax-mp |
|- { x e. X | ( x prefix M ) = y } C_ { x e. Word ( Vtx ` G ) | ( x prefix M ) = y } |
14 |
6 13
|
sstri |
|- { x e. X | ( ( x prefix M ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) } C_ { x e. Word ( Vtx ` G ) | ( x prefix M ) = y } |
15 |
14
|
rgenw |
|- A. y e. Y { x e. X | ( ( x prefix M ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) } C_ { x e. Word ( Vtx ` G ) | ( x prefix M ) = y } |
16 |
|
disjwrdpfx |
|- Disj_ y e. Y { x e. Word ( Vtx ` G ) | ( x prefix M ) = y } |
17 |
|
disjss2 |
|- ( A. y e. Y { x e. X | ( ( x prefix M ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) } C_ { x e. Word ( Vtx ` G ) | ( x prefix M ) = y } -> ( Disj_ y e. Y { x e. Word ( Vtx ` G ) | ( x prefix M ) = y } -> Disj_ y e. Y { x e. X | ( ( x prefix M ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) } ) ) |
18 |
15 16 17
|
mp2 |
|- Disj_ y e. Y { x e. X | ( ( x prefix M ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) } |