Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnexthasheq.v |
|- V = ( Vtx ` G ) |
2 |
|
wwlksnexthasheq.e |
|- E = ( Edg ` G ) |
3 |
|
simp1 |
|- ( ( ( x prefix N ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) -> ( x prefix N ) = y ) |
4 |
3
|
a1i |
|- ( x e. Word V -> ( ( ( x prefix N ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) -> ( x prefix N ) = y ) ) |
5 |
4
|
ss2rabi |
|- { x e. Word V | ( ( x prefix N ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) } C_ { x e. Word V | ( x prefix N ) = y } |
6 |
5
|
rgenw |
|- A. y e. ( N WWalksN G ) { x e. Word V | ( ( x prefix N ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) } C_ { x e. Word V | ( x prefix N ) = y } |
7 |
|
disjwrdpfx |
|- Disj_ y e. ( N WWalksN G ) { x e. Word V | ( x prefix N ) = y } |
8 |
|
disjss2 |
|- ( A. y e. ( N WWalksN G ) { x e. Word V | ( ( x prefix N ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) } C_ { x e. Word V | ( x prefix N ) = y } -> ( Disj_ y e. ( N WWalksN G ) { x e. Word V | ( x prefix N ) = y } -> Disj_ y e. ( N WWalksN G ) { x e. Word V | ( ( x prefix N ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) } ) ) |
9 |
6 7 8
|
mp2 |
|- Disj_ y e. ( N WWalksN G ) { x e. Word V | ( ( x prefix N ) = y /\ ( y ` 0 ) = P /\ { ( lastS ` y ) , ( lastS ` x ) } e. E ) } |