Description: A discrete space is locally compact. (Contributed by Mario Carneiro, 20-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | disllycmp | |- ( X e. V -> ~P X e. Locally Comp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi | |- { x } e. Fin |
|
2 | discmp | |- ( { x } e. Fin <-> ~P { x } e. Comp ) |
|
3 | 1 2 | mpbi | |- ~P { x } e. Comp |
4 | 3 | rgenw | |- A. x e. X ~P { x } e. Comp |
5 | dislly | |- ( X e. V -> ( ~P X e. Locally Comp <-> A. x e. X ~P { x } e. Comp ) ) |
|
6 | 4 5 | mpbiri | |- ( X e. V -> ~P X e. Locally Comp ) |