| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nr |
|- R. = ( ( P. X. P. ) /. ~R ) |
| 2 |
|
addsrpr |
|- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( [ <. z , w >. ] ~R +R [ <. v , u >. ] ~R ) = [ <. ( z +P. v ) , ( w +P. u ) >. ] ~R ) |
| 3 |
|
mulsrpr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. ( z +P. v ) , ( w +P. u ) >. ] ~R ) = [ <. ( ( x .P. ( z +P. v ) ) +P. ( y .P. ( w +P. u ) ) ) , ( ( x .P. ( w +P. u ) ) +P. ( y .P. ( z +P. v ) ) ) >. ] ~R ) |
| 4 |
|
mulsrpr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R ) |
| 5 |
|
mulsrpr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. v , u >. ] ~R ) = [ <. ( ( x .P. v ) +P. ( y .P. u ) ) , ( ( x .P. u ) +P. ( y .P. v ) ) >. ] ~R ) |
| 6 |
|
addsrpr |
|- ( ( ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. /\ ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) /\ ( ( ( x .P. v ) +P. ( y .P. u ) ) e. P. /\ ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) ) -> ( [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R +R [ <. ( ( x .P. v ) +P. ( y .P. u ) ) , ( ( x .P. u ) +P. ( y .P. v ) ) >. ] ~R ) = [ <. ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( ( x .P. v ) +P. ( y .P. u ) ) ) , ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( ( x .P. u ) +P. ( y .P. v ) ) ) >. ] ~R ) |
| 7 |
|
addclpr |
|- ( ( z e. P. /\ v e. P. ) -> ( z +P. v ) e. P. ) |
| 8 |
|
addclpr |
|- ( ( w e. P. /\ u e. P. ) -> ( w +P. u ) e. P. ) |
| 9 |
7 8
|
anim12i |
|- ( ( ( z e. P. /\ v e. P. ) /\ ( w e. P. /\ u e. P. ) ) -> ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) |
| 10 |
9
|
an4s |
|- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) |
| 11 |
|
mulclpr |
|- ( ( x e. P. /\ z e. P. ) -> ( x .P. z ) e. P. ) |
| 12 |
|
mulclpr |
|- ( ( y e. P. /\ w e. P. ) -> ( y .P. w ) e. P. ) |
| 13 |
|
addclpr |
|- ( ( ( x .P. z ) e. P. /\ ( y .P. w ) e. P. ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 14 |
11 12 13
|
syl2an |
|- ( ( ( x e. P. /\ z e. P. ) /\ ( y e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 15 |
14
|
an4s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 16 |
|
mulclpr |
|- ( ( x e. P. /\ w e. P. ) -> ( x .P. w ) e. P. ) |
| 17 |
|
mulclpr |
|- ( ( y e. P. /\ z e. P. ) -> ( y .P. z ) e. P. ) |
| 18 |
|
addclpr |
|- ( ( ( x .P. w ) e. P. /\ ( y .P. z ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
| 19 |
16 17 18
|
syl2an |
|- ( ( ( x e. P. /\ w e. P. ) /\ ( y e. P. /\ z e. P. ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
| 20 |
19
|
an42s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
| 21 |
15 20
|
jca |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. /\ ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) ) |
| 22 |
|
mulclpr |
|- ( ( x e. P. /\ v e. P. ) -> ( x .P. v ) e. P. ) |
| 23 |
|
mulclpr |
|- ( ( y e. P. /\ u e. P. ) -> ( y .P. u ) e. P. ) |
| 24 |
|
addclpr |
|- ( ( ( x .P. v ) e. P. /\ ( y .P. u ) e. P. ) -> ( ( x .P. v ) +P. ( y .P. u ) ) e. P. ) |
| 25 |
22 23 24
|
syl2an |
|- ( ( ( x e. P. /\ v e. P. ) /\ ( y e. P. /\ u e. P. ) ) -> ( ( x .P. v ) +P. ( y .P. u ) ) e. P. ) |
| 26 |
25
|
an4s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( x .P. v ) +P. ( y .P. u ) ) e. P. ) |
| 27 |
|
mulclpr |
|- ( ( x e. P. /\ u e. P. ) -> ( x .P. u ) e. P. ) |
| 28 |
|
mulclpr |
|- ( ( y e. P. /\ v e. P. ) -> ( y .P. v ) e. P. ) |
| 29 |
|
addclpr |
|- ( ( ( x .P. u ) e. P. /\ ( y .P. v ) e. P. ) -> ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) |
| 30 |
27 28 29
|
syl2an |
|- ( ( ( x e. P. /\ u e. P. ) /\ ( y e. P. /\ v e. P. ) ) -> ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) |
| 31 |
30
|
an42s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) |
| 32 |
26 31
|
jca |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( ( x .P. v ) +P. ( y .P. u ) ) e. P. /\ ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) ) |
| 33 |
|
distrpr |
|- ( x .P. ( z +P. v ) ) = ( ( x .P. z ) +P. ( x .P. v ) ) |
| 34 |
|
distrpr |
|- ( y .P. ( w +P. u ) ) = ( ( y .P. w ) +P. ( y .P. u ) ) |
| 35 |
33 34
|
oveq12i |
|- ( ( x .P. ( z +P. v ) ) +P. ( y .P. ( w +P. u ) ) ) = ( ( ( x .P. z ) +P. ( x .P. v ) ) +P. ( ( y .P. w ) +P. ( y .P. u ) ) ) |
| 36 |
|
ovex |
|- ( x .P. z ) e. _V |
| 37 |
|
ovex |
|- ( x .P. v ) e. _V |
| 38 |
|
ovex |
|- ( y .P. w ) e. _V |
| 39 |
|
addcompr |
|- ( f +P. g ) = ( g +P. f ) |
| 40 |
|
addasspr |
|- ( ( f +P. g ) +P. h ) = ( f +P. ( g +P. h ) ) |
| 41 |
|
ovex |
|- ( y .P. u ) e. _V |
| 42 |
36 37 38 39 40 41
|
caov4 |
|- ( ( ( x .P. z ) +P. ( x .P. v ) ) +P. ( ( y .P. w ) +P. ( y .P. u ) ) ) = ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( ( x .P. v ) +P. ( y .P. u ) ) ) |
| 43 |
35 42
|
eqtri |
|- ( ( x .P. ( z +P. v ) ) +P. ( y .P. ( w +P. u ) ) ) = ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( ( x .P. v ) +P. ( y .P. u ) ) ) |
| 44 |
|
distrpr |
|- ( x .P. ( w +P. u ) ) = ( ( x .P. w ) +P. ( x .P. u ) ) |
| 45 |
|
distrpr |
|- ( y .P. ( z +P. v ) ) = ( ( y .P. z ) +P. ( y .P. v ) ) |
| 46 |
44 45
|
oveq12i |
|- ( ( x .P. ( w +P. u ) ) +P. ( y .P. ( z +P. v ) ) ) = ( ( ( x .P. w ) +P. ( x .P. u ) ) +P. ( ( y .P. z ) +P. ( y .P. v ) ) ) |
| 47 |
|
ovex |
|- ( x .P. w ) e. _V |
| 48 |
|
ovex |
|- ( x .P. u ) e. _V |
| 49 |
|
ovex |
|- ( y .P. z ) e. _V |
| 50 |
|
ovex |
|- ( y .P. v ) e. _V |
| 51 |
47 48 49 39 40 50
|
caov4 |
|- ( ( ( x .P. w ) +P. ( x .P. u ) ) +P. ( ( y .P. z ) +P. ( y .P. v ) ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( ( x .P. u ) +P. ( y .P. v ) ) ) |
| 52 |
46 51
|
eqtri |
|- ( ( x .P. ( w +P. u ) ) +P. ( y .P. ( z +P. v ) ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( ( x .P. u ) +P. ( y .P. v ) ) ) |
| 53 |
1 2 3 4 5 6 10 21 32 43 52
|
ecovdi |
|- ( ( A e. R. /\ B e. R. /\ C e. R. ) -> ( A .R ( B +R C ) ) = ( ( A .R B ) +R ( A .R C ) ) ) |
| 54 |
|
dmaddsr |
|- dom +R = ( R. X. R. ) |
| 55 |
|
0nsr |
|- -. (/) e. R. |
| 56 |
|
dmmulsr |
|- dom .R = ( R. X. R. ) |
| 57 |
54 55 56
|
ndmovdistr |
|- ( -. ( A e. R. /\ B e. R. /\ C e. R. ) -> ( A .R ( B +R C ) ) = ( ( A .R B ) +R ( A .R C ) ) ) |
| 58 |
53 57
|
pm2.61i |
|- ( A .R ( B +R C ) ) = ( ( A .R B ) +R ( A .R C ) ) |