Step |
Hyp |
Ref |
Expression |
1 |
|
df-nr |
|- R. = ( ( P. X. P. ) /. ~R ) |
2 |
|
addsrpr |
|- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( [ <. z , w >. ] ~R +R [ <. v , u >. ] ~R ) = [ <. ( z +P. v ) , ( w +P. u ) >. ] ~R ) |
3 |
|
mulsrpr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. ( z +P. v ) , ( w +P. u ) >. ] ~R ) = [ <. ( ( x .P. ( z +P. v ) ) +P. ( y .P. ( w +P. u ) ) ) , ( ( x .P. ( w +P. u ) ) +P. ( y .P. ( z +P. v ) ) ) >. ] ~R ) |
4 |
|
mulsrpr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R ) |
5 |
|
mulsrpr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. v , u >. ] ~R ) = [ <. ( ( x .P. v ) +P. ( y .P. u ) ) , ( ( x .P. u ) +P. ( y .P. v ) ) >. ] ~R ) |
6 |
|
addsrpr |
|- ( ( ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. /\ ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) /\ ( ( ( x .P. v ) +P. ( y .P. u ) ) e. P. /\ ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) ) -> ( [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R +R [ <. ( ( x .P. v ) +P. ( y .P. u ) ) , ( ( x .P. u ) +P. ( y .P. v ) ) >. ] ~R ) = [ <. ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( ( x .P. v ) +P. ( y .P. u ) ) ) , ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( ( x .P. u ) +P. ( y .P. v ) ) ) >. ] ~R ) |
7 |
|
addclpr |
|- ( ( z e. P. /\ v e. P. ) -> ( z +P. v ) e. P. ) |
8 |
|
addclpr |
|- ( ( w e. P. /\ u e. P. ) -> ( w +P. u ) e. P. ) |
9 |
7 8
|
anim12i |
|- ( ( ( z e. P. /\ v e. P. ) /\ ( w e. P. /\ u e. P. ) ) -> ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) |
10 |
9
|
an4s |
|- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) |
11 |
|
mulclpr |
|- ( ( x e. P. /\ z e. P. ) -> ( x .P. z ) e. P. ) |
12 |
|
mulclpr |
|- ( ( y e. P. /\ w e. P. ) -> ( y .P. w ) e. P. ) |
13 |
|
addclpr |
|- ( ( ( x .P. z ) e. P. /\ ( y .P. w ) e. P. ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
14 |
11 12 13
|
syl2an |
|- ( ( ( x e. P. /\ z e. P. ) /\ ( y e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
15 |
14
|
an4s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
16 |
|
mulclpr |
|- ( ( x e. P. /\ w e. P. ) -> ( x .P. w ) e. P. ) |
17 |
|
mulclpr |
|- ( ( y e. P. /\ z e. P. ) -> ( y .P. z ) e. P. ) |
18 |
|
addclpr |
|- ( ( ( x .P. w ) e. P. /\ ( y .P. z ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
19 |
16 17 18
|
syl2an |
|- ( ( ( x e. P. /\ w e. P. ) /\ ( y e. P. /\ z e. P. ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
20 |
19
|
an42s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
21 |
15 20
|
jca |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. /\ ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) ) |
22 |
|
mulclpr |
|- ( ( x e. P. /\ v e. P. ) -> ( x .P. v ) e. P. ) |
23 |
|
mulclpr |
|- ( ( y e. P. /\ u e. P. ) -> ( y .P. u ) e. P. ) |
24 |
|
addclpr |
|- ( ( ( x .P. v ) e. P. /\ ( y .P. u ) e. P. ) -> ( ( x .P. v ) +P. ( y .P. u ) ) e. P. ) |
25 |
22 23 24
|
syl2an |
|- ( ( ( x e. P. /\ v e. P. ) /\ ( y e. P. /\ u e. P. ) ) -> ( ( x .P. v ) +P. ( y .P. u ) ) e. P. ) |
26 |
25
|
an4s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( x .P. v ) +P. ( y .P. u ) ) e. P. ) |
27 |
|
mulclpr |
|- ( ( x e. P. /\ u e. P. ) -> ( x .P. u ) e. P. ) |
28 |
|
mulclpr |
|- ( ( y e. P. /\ v e. P. ) -> ( y .P. v ) e. P. ) |
29 |
|
addclpr |
|- ( ( ( x .P. u ) e. P. /\ ( y .P. v ) e. P. ) -> ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) |
30 |
27 28 29
|
syl2an |
|- ( ( ( x e. P. /\ u e. P. ) /\ ( y e. P. /\ v e. P. ) ) -> ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) |
31 |
30
|
an42s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) |
32 |
26 31
|
jca |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( ( x .P. v ) +P. ( y .P. u ) ) e. P. /\ ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) ) |
33 |
|
distrpr |
|- ( x .P. ( z +P. v ) ) = ( ( x .P. z ) +P. ( x .P. v ) ) |
34 |
|
distrpr |
|- ( y .P. ( w +P. u ) ) = ( ( y .P. w ) +P. ( y .P. u ) ) |
35 |
33 34
|
oveq12i |
|- ( ( x .P. ( z +P. v ) ) +P. ( y .P. ( w +P. u ) ) ) = ( ( ( x .P. z ) +P. ( x .P. v ) ) +P. ( ( y .P. w ) +P. ( y .P. u ) ) ) |
36 |
|
ovex |
|- ( x .P. z ) e. _V |
37 |
|
ovex |
|- ( x .P. v ) e. _V |
38 |
|
ovex |
|- ( y .P. w ) e. _V |
39 |
|
addcompr |
|- ( f +P. g ) = ( g +P. f ) |
40 |
|
addasspr |
|- ( ( f +P. g ) +P. h ) = ( f +P. ( g +P. h ) ) |
41 |
|
ovex |
|- ( y .P. u ) e. _V |
42 |
36 37 38 39 40 41
|
caov4 |
|- ( ( ( x .P. z ) +P. ( x .P. v ) ) +P. ( ( y .P. w ) +P. ( y .P. u ) ) ) = ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( ( x .P. v ) +P. ( y .P. u ) ) ) |
43 |
35 42
|
eqtri |
|- ( ( x .P. ( z +P. v ) ) +P. ( y .P. ( w +P. u ) ) ) = ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( ( x .P. v ) +P. ( y .P. u ) ) ) |
44 |
|
distrpr |
|- ( x .P. ( w +P. u ) ) = ( ( x .P. w ) +P. ( x .P. u ) ) |
45 |
|
distrpr |
|- ( y .P. ( z +P. v ) ) = ( ( y .P. z ) +P. ( y .P. v ) ) |
46 |
44 45
|
oveq12i |
|- ( ( x .P. ( w +P. u ) ) +P. ( y .P. ( z +P. v ) ) ) = ( ( ( x .P. w ) +P. ( x .P. u ) ) +P. ( ( y .P. z ) +P. ( y .P. v ) ) ) |
47 |
|
ovex |
|- ( x .P. w ) e. _V |
48 |
|
ovex |
|- ( x .P. u ) e. _V |
49 |
|
ovex |
|- ( y .P. z ) e. _V |
50 |
|
ovex |
|- ( y .P. v ) e. _V |
51 |
47 48 49 39 40 50
|
caov4 |
|- ( ( ( x .P. w ) +P. ( x .P. u ) ) +P. ( ( y .P. z ) +P. ( y .P. v ) ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( ( x .P. u ) +P. ( y .P. v ) ) ) |
52 |
46 51
|
eqtri |
|- ( ( x .P. ( w +P. u ) ) +P. ( y .P. ( z +P. v ) ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( ( x .P. u ) +P. ( y .P. v ) ) ) |
53 |
1 2 3 4 5 6 10 21 32 43 52
|
ecovdi |
|- ( ( A e. R. /\ B e. R. /\ C e. R. ) -> ( A .R ( B +R C ) ) = ( ( A .R B ) +R ( A .R C ) ) ) |
54 |
|
dmaddsr |
|- dom +R = ( R. X. R. ) |
55 |
|
0nsr |
|- -. (/) e. R. |
56 |
|
dmmulsr |
|- dom .R = ( R. X. R. ) |
57 |
54 55 56
|
ndmovdistr |
|- ( -. ( A e. R. /\ B e. R. /\ C e. R. ) -> ( A .R ( B +R C ) ) = ( ( A .R B ) +R ( A .R C ) ) ) |
58 |
53 57
|
pm2.61i |
|- ( A .R ( B +R C ) ) = ( ( A .R B ) +R ( A .R C ) ) |