| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 |  |-  ( A = B -> ( C <_ A <-> C <_ B ) ) | 
						
							| 2 |  | oveq2 |  |-  ( A = B -> ( C (,) A ) = ( C (,) B ) ) | 
						
							| 3 |  | itgeq1 |  |-  ( ( C (,) A ) = ( C (,) B ) -> S. ( C (,) A ) D _d x = S. ( C (,) B ) D _d x ) | 
						
							| 4 | 2 3 | syl |  |-  ( A = B -> S. ( C (,) A ) D _d x = S. ( C (,) B ) D _d x ) | 
						
							| 5 |  | oveq1 |  |-  ( A = B -> ( A (,) C ) = ( B (,) C ) ) | 
						
							| 6 |  | itgeq1 |  |-  ( ( A (,) C ) = ( B (,) C ) -> S. ( A (,) C ) D _d x = S. ( B (,) C ) D _d x ) | 
						
							| 7 | 5 6 | syl |  |-  ( A = B -> S. ( A (,) C ) D _d x = S. ( B (,) C ) D _d x ) | 
						
							| 8 | 7 | negeqd |  |-  ( A = B -> -u S. ( A (,) C ) D _d x = -u S. ( B (,) C ) D _d x ) | 
						
							| 9 | 1 4 8 | ifbieq12d |  |-  ( A = B -> if ( C <_ A , S. ( C (,) A ) D _d x , -u S. ( A (,) C ) D _d x ) = if ( C <_ B , S. ( C (,) B ) D _d x , -u S. ( B (,) C ) D _d x ) ) | 
						
							| 10 |  | df-ditg |  |-  S_ [ C -> A ] D _d x = if ( C <_ A , S. ( C (,) A ) D _d x , -u S. ( A (,) C ) D _d x ) | 
						
							| 11 |  | df-ditg |  |-  S_ [ C -> B ] D _d x = if ( C <_ B , S. ( C (,) B ) D _d x , -u S. ( B (,) C ) D _d x ) | 
						
							| 12 | 9 10 11 | 3eqtr4g |  |-  ( A = B -> S_ [ C -> A ] D _d x = S_ [ C -> B ] D _d x ) |