| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ditgeq3d.1 | 
							 |-  ( ph -> A <_ B )  | 
						
						
							| 2 | 
							
								
							 | 
							ditgeq3d.2 | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> D = E )  | 
						
						
							| 3 | 
							
								
							 | 
							df-ditg | 
							 |-  S_ [ A -> B ] D _d x = if ( A <_ B , S. ( A (,) B ) D _d x , -u S. ( B (,) A ) D _d x )  | 
						
						
							| 4 | 
							
								1
							 | 
							iftrued | 
							 |-  ( ph -> if ( A <_ B , S. ( A (,) B ) D _d x , -u S. ( B (,) A ) D _d x ) = S. ( A (,) B ) D _d x )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqtrid | 
							 |-  ( ph -> S_ [ A -> B ] D _d x = S. ( A (,) B ) D _d x )  | 
						
						
							| 6 | 
							
								2
							 | 
							itgeq2dv | 
							 |-  ( ph -> S. ( A (,) B ) D _d x = S. ( A (,) B ) E _d x )  | 
						
						
							| 7 | 
							
								
							 | 
							df-ditg | 
							 |-  S_ [ A -> B ] E _d x = if ( A <_ B , S. ( A (,) B ) E _d x , -u S. ( B (,) A ) E _d x )  | 
						
						
							| 8 | 
							
								1
							 | 
							iftrued | 
							 |-  ( ph -> if ( A <_ B , S. ( A (,) B ) E _d x , -u S. ( B (,) A ) E _d x ) = S. ( A (,) B ) E _d x )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtr2id | 
							 |-  ( ph -> S. ( A (,) B ) E _d x = S_ [ A -> B ] E _d x )  | 
						
						
							| 10 | 
							
								5 6 9
							 | 
							3eqtrd | 
							 |-  ( ph -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x )  |