Metamath Proof Explorer


Theorem ditgeq3d

Description: Equality theorem for the directed integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ditgeq3d.1
|- ( ph -> A <_ B )
ditgeq3d.2
|- ( ( ph /\ x e. ( A (,) B ) ) -> D = E )
Assertion ditgeq3d
|- ( ph -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x )

Proof

Step Hyp Ref Expression
1 ditgeq3d.1
 |-  ( ph -> A <_ B )
2 ditgeq3d.2
 |-  ( ( ph /\ x e. ( A (,) B ) ) -> D = E )
3 df-ditg
 |-  S_ [ A -> B ] D _d x = if ( A <_ B , S. ( A (,) B ) D _d x , -u S. ( B (,) A ) D _d x )
4 1 iftrued
 |-  ( ph -> if ( A <_ B , S. ( A (,) B ) D _d x , -u S. ( B (,) A ) D _d x ) = S. ( A (,) B ) D _d x )
5 3 4 syl5eq
 |-  ( ph -> S_ [ A -> B ] D _d x = S. ( A (,) B ) D _d x )
6 2 itgeq2dv
 |-  ( ph -> S. ( A (,) B ) D _d x = S. ( A (,) B ) E _d x )
7 df-ditg
 |-  S_ [ A -> B ] E _d x = if ( A <_ B , S. ( A (,) B ) E _d x , -u S. ( B (,) A ) E _d x )
8 1 iftrued
 |-  ( ph -> if ( A <_ B , S. ( A (,) B ) E _d x , -u S. ( B (,) A ) E _d x ) = S. ( A (,) B ) E _d x )
9 7 8 eqtr2id
 |-  ( ph -> S. ( A (,) B ) E _d x = S_ [ A -> B ] E _d x )
10 5 6 9 3eqtrd
 |-  ( ph -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x )