Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ditgeq3dv.1 | |- ( ( ph /\ x e. RR ) -> D = E ) |
|
Assertion | ditgeq3dv | |- ( ph -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ditgeq3dv.1 | |- ( ( ph /\ x e. RR ) -> D = E ) |
|
2 | 1 | ralrimiva | |- ( ph -> A. x e. RR D = E ) |
3 | ditgeq3 | |- ( A. x e. RR D = E -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x ) |
|
4 | 2 3 | syl | |- ( ph -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x ) |