Metamath Proof Explorer


Theorem ditgeq3dv

Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypothesis ditgeq3dv.1
|- ( ( ph /\ x e. RR ) -> D = E )
Assertion ditgeq3dv
|- ( ph -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x )

Proof

Step Hyp Ref Expression
1 ditgeq3dv.1
 |-  ( ( ph /\ x e. RR ) -> D = E )
2 1 ralrimiva
 |-  ( ph -> A. x e. RR D = E )
3 ditgeq3
 |-  ( A. x e. RR D = E -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x )
4 2 3 syl
 |-  ( ph -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x )