Metamath Proof Explorer


Theorem ditgex

Description: A directed integral is a set. (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Assertion ditgex
|- S_ [ A -> B ] C _d x e. _V

Proof

Step Hyp Ref Expression
1 df-ditg
 |-  S_ [ A -> B ] C _d x = if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x )
2 itgex
 |-  S. ( A (,) B ) C _d x e. _V
3 negex
 |-  -u S. ( B (,) A ) C _d x e. _V
4 2 3 ifex
 |-  if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x ) e. _V
5 1 4 eqeltri
 |-  S_ [ A -> B ] C _d x e. _V