| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ditgpos.1 |  |-  ( ph -> A <_ B ) | 
						
							| 2 |  | ditgneg.2 |  |-  ( ph -> A e. RR ) | 
						
							| 3 |  | ditgneg.3 |  |-  ( ph -> B e. RR ) | 
						
							| 4 | 1 | biantrurd |  |-  ( ph -> ( B <_ A <-> ( A <_ B /\ B <_ A ) ) ) | 
						
							| 5 | 2 3 | letri3d |  |-  ( ph -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) | 
						
							| 6 | 4 5 | bitr4d |  |-  ( ph -> ( B <_ A <-> A = B ) ) | 
						
							| 7 |  | ditg0 |  |-  S_ [ B -> B ] C _d x = 0 | 
						
							| 8 |  | neg0 |  |-  -u 0 = 0 | 
						
							| 9 | 7 8 | eqtr4i |  |-  S_ [ B -> B ] C _d x = -u 0 | 
						
							| 10 |  | ditgeq2 |  |-  ( A = B -> S_ [ B -> A ] C _d x = S_ [ B -> B ] C _d x ) | 
						
							| 11 |  | oveq1 |  |-  ( A = B -> ( A (,) B ) = ( B (,) B ) ) | 
						
							| 12 |  | iooid |  |-  ( B (,) B ) = (/) | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( A = B -> ( A (,) B ) = (/) ) | 
						
							| 14 |  | itgeq1 |  |-  ( ( A (,) B ) = (/) -> S. ( A (,) B ) C _d x = S. (/) C _d x ) | 
						
							| 15 | 13 14 | syl |  |-  ( A = B -> S. ( A (,) B ) C _d x = S. (/) C _d x ) | 
						
							| 16 |  | itg0 |  |-  S. (/) C _d x = 0 | 
						
							| 17 | 15 16 | eqtrdi |  |-  ( A = B -> S. ( A (,) B ) C _d x = 0 ) | 
						
							| 18 | 17 | negeqd |  |-  ( A = B -> -u S. ( A (,) B ) C _d x = -u 0 ) | 
						
							| 19 | 9 10 18 | 3eqtr4a |  |-  ( A = B -> S_ [ B -> A ] C _d x = -u S. ( A (,) B ) C _d x ) | 
						
							| 20 | 6 19 | biimtrdi |  |-  ( ph -> ( B <_ A -> S_ [ B -> A ] C _d x = -u S. ( A (,) B ) C _d x ) ) | 
						
							| 21 |  | df-ditg |  |-  S_ [ B -> A ] C _d x = if ( B <_ A , S. ( B (,) A ) C _d x , -u S. ( A (,) B ) C _d x ) | 
						
							| 22 |  | iffalse |  |-  ( -. B <_ A -> if ( B <_ A , S. ( B (,) A ) C _d x , -u S. ( A (,) B ) C _d x ) = -u S. ( A (,) B ) C _d x ) | 
						
							| 23 | 21 22 | eqtrid |  |-  ( -. B <_ A -> S_ [ B -> A ] C _d x = -u S. ( A (,) B ) C _d x ) | 
						
							| 24 | 20 23 | pm2.61d1 |  |-  ( ph -> S_ [ B -> A ] C _d x = -u S. ( A (,) B ) C _d x ) |