Metamath Proof Explorer


Theorem ditgpos

Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypothesis ditgpos.1
|- ( ph -> A <_ B )
Assertion ditgpos
|- ( ph -> S_ [ A -> B ] C _d x = S. ( A (,) B ) C _d x )

Proof

Step Hyp Ref Expression
1 ditgpos.1
 |-  ( ph -> A <_ B )
2 df-ditg
 |-  S_ [ A -> B ] C _d x = if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x )
3 1 iftrued
 |-  ( ph -> if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x ) = S. ( A (,) B ) C _d x )
4 2 3 syl5eq
 |-  ( ph -> S_ [ A -> B ] C _d x = S. ( A (,) B ) C _d x )