Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ditgpos.1 | |- ( ph -> A <_ B ) |
|
| Assertion | ditgpos | |- ( ph -> S_ [ A -> B ] C _d x = S. ( A (,) B ) C _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgpos.1 | |- ( ph -> A <_ B ) |
|
| 2 | df-ditg | |- S_ [ A -> B ] C _d x = if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x ) |
|
| 3 | 1 | iftrued | |- ( ph -> if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x ) = S. ( A (,) B ) C _d x ) |
| 4 | 2 3 | eqtrid | |- ( ph -> S_ [ A -> B ] C _d x = S. ( A (,) B ) C _d x ) |