Step |
Hyp |
Ref |
Expression |
1 |
|
ditgsplit.x |
|- ( ph -> X e. RR ) |
2 |
|
ditgsplit.y |
|- ( ph -> Y e. RR ) |
3 |
|
ditgsplit.a |
|- ( ph -> A e. ( X [,] Y ) ) |
4 |
|
ditgsplit.b |
|- ( ph -> B e. ( X [,] Y ) ) |
5 |
|
ditgsplit.c |
|- ( ph -> C e. ( X [,] Y ) ) |
6 |
|
ditgsplit.d |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> D e. V ) |
7 |
|
ditgsplit.i |
|- ( ph -> ( x e. ( X (,) Y ) |-> D ) e. L^1 ) |
8 |
|
elicc2 |
|- ( ( X e. RR /\ Y e. RR ) -> ( A e. ( X [,] Y ) <-> ( A e. RR /\ X <_ A /\ A <_ Y ) ) ) |
9 |
1 2 8
|
syl2anc |
|- ( ph -> ( A e. ( X [,] Y ) <-> ( A e. RR /\ X <_ A /\ A <_ Y ) ) ) |
10 |
3 9
|
mpbid |
|- ( ph -> ( A e. RR /\ X <_ A /\ A <_ Y ) ) |
11 |
10
|
simp1d |
|- ( ph -> A e. RR ) |
12 |
|
elicc2 |
|- ( ( X e. RR /\ Y e. RR ) -> ( B e. ( X [,] Y ) <-> ( B e. RR /\ X <_ B /\ B <_ Y ) ) ) |
13 |
1 2 12
|
syl2anc |
|- ( ph -> ( B e. ( X [,] Y ) <-> ( B e. RR /\ X <_ B /\ B <_ Y ) ) ) |
14 |
4 13
|
mpbid |
|- ( ph -> ( B e. RR /\ X <_ B /\ B <_ Y ) ) |
15 |
14
|
simp1d |
|- ( ph -> B e. RR ) |
16 |
11
|
adantr |
|- ( ( ph /\ A <_ B ) -> A e. RR ) |
17 |
|
elicc2 |
|- ( ( X e. RR /\ Y e. RR ) -> ( C e. ( X [,] Y ) <-> ( C e. RR /\ X <_ C /\ C <_ Y ) ) ) |
18 |
1 2 17
|
syl2anc |
|- ( ph -> ( C e. ( X [,] Y ) <-> ( C e. RR /\ X <_ C /\ C <_ Y ) ) ) |
19 |
5 18
|
mpbid |
|- ( ph -> ( C e. RR /\ X <_ C /\ C <_ Y ) ) |
20 |
19
|
simp1d |
|- ( ph -> C e. RR ) |
21 |
20
|
adantr |
|- ( ( ph /\ A <_ B ) -> C e. RR ) |
22 |
15
|
ad2antrr |
|- ( ( ( ph /\ A <_ B ) /\ A <_ C ) -> B e. RR ) |
23 |
20
|
ad2antrr |
|- ( ( ( ph /\ A <_ B ) /\ A <_ C ) -> C e. RR ) |
24 |
|
biid |
|- ( ( A <_ B /\ B <_ C ) <-> ( A <_ B /\ B <_ C ) ) |
25 |
1 2 3 4 5 6 7 24
|
ditgsplitlem |
|- ( ( ( ph /\ A <_ B ) /\ B <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
26 |
25
|
adantlr |
|- ( ( ( ( ph /\ A <_ B ) /\ A <_ C ) /\ B <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
27 |
|
biid |
|- ( ( A <_ C /\ C <_ B ) <-> ( A <_ C /\ C <_ B ) ) |
28 |
1 2 3 5 4 6 7 27
|
ditgsplitlem |
|- ( ( ( ph /\ A <_ C ) /\ C <_ B ) -> S_ [ A -> B ] D _d x = ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) ) |
29 |
28
|
oveq1d |
|- ( ( ( ph /\ A <_ C ) /\ C <_ B ) -> ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) ) |
30 |
1 2 3 5 6 7
|
ditgcl |
|- ( ph -> S_ [ A -> C ] D _d x e. CC ) |
31 |
1 2 5 4 6 7
|
ditgcl |
|- ( ph -> S_ [ C -> B ] D _d x e. CC ) |
32 |
1 2 4 5 6 7
|
ditgcl |
|- ( ph -> S_ [ B -> C ] D _d x e. CC ) |
33 |
30 31 32
|
addassd |
|- ( ph -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = ( S_ [ A -> C ] D _d x + ( S_ [ C -> B ] D _d x + S_ [ B -> C ] D _d x ) ) ) |
34 |
1 2 5 4 6 7
|
ditgswap |
|- ( ph -> S_ [ B -> C ] D _d x = -u S_ [ C -> B ] D _d x ) |
35 |
34
|
oveq2d |
|- ( ph -> ( S_ [ C -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( S_ [ C -> B ] D _d x + -u S_ [ C -> B ] D _d x ) ) |
36 |
31
|
negidd |
|- ( ph -> ( S_ [ C -> B ] D _d x + -u S_ [ C -> B ] D _d x ) = 0 ) |
37 |
35 36
|
eqtrd |
|- ( ph -> ( S_ [ C -> B ] D _d x + S_ [ B -> C ] D _d x ) = 0 ) |
38 |
37
|
oveq2d |
|- ( ph -> ( S_ [ A -> C ] D _d x + ( S_ [ C -> B ] D _d x + S_ [ B -> C ] D _d x ) ) = ( S_ [ A -> C ] D _d x + 0 ) ) |
39 |
30
|
addid1d |
|- ( ph -> ( S_ [ A -> C ] D _d x + 0 ) = S_ [ A -> C ] D _d x ) |
40 |
33 38 39
|
3eqtrd |
|- ( ph -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
41 |
40
|
ad2antrr |
|- ( ( ( ph /\ A <_ C ) /\ C <_ B ) -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
42 |
29 41
|
eqtr2d |
|- ( ( ( ph /\ A <_ C ) /\ C <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
43 |
42
|
adantllr |
|- ( ( ( ( ph /\ A <_ B ) /\ A <_ C ) /\ C <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
44 |
22 23 26 43
|
lecasei |
|- ( ( ( ph /\ A <_ B ) /\ A <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
45 |
40
|
ad2antrr |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
46 |
|
ancom |
|- ( ( A <_ B /\ C <_ A ) <-> ( C <_ A /\ A <_ B ) ) |
47 |
1 2 5 3 4 6 7 46
|
ditgsplitlem |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> S_ [ C -> B ] D _d x = ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) |
48 |
47
|
oveq2d |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) = ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) ) |
49 |
1 2 3 5 6 7
|
ditgswap |
|- ( ph -> S_ [ C -> A ] D _d x = -u S_ [ A -> C ] D _d x ) |
50 |
49
|
oveq2d |
|- ( ph -> ( S_ [ A -> C ] D _d x + S_ [ C -> A ] D _d x ) = ( S_ [ A -> C ] D _d x + -u S_ [ A -> C ] D _d x ) ) |
51 |
30
|
negidd |
|- ( ph -> ( S_ [ A -> C ] D _d x + -u S_ [ A -> C ] D _d x ) = 0 ) |
52 |
50 51
|
eqtrd |
|- ( ph -> ( S_ [ A -> C ] D _d x + S_ [ C -> A ] D _d x ) = 0 ) |
53 |
52
|
oveq1d |
|- ( ph -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = ( 0 + S_ [ A -> B ] D _d x ) ) |
54 |
1 2 5 3 6 7
|
ditgcl |
|- ( ph -> S_ [ C -> A ] D _d x e. CC ) |
55 |
1 2 3 4 6 7
|
ditgcl |
|- ( ph -> S_ [ A -> B ] D _d x e. CC ) |
56 |
30 54 55
|
addassd |
|- ( ph -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) ) |
57 |
55
|
addid2d |
|- ( ph -> ( 0 + S_ [ A -> B ] D _d x ) = S_ [ A -> B ] D _d x ) |
58 |
53 56 57
|
3eqtr3d |
|- ( ph -> ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) = S_ [ A -> B ] D _d x ) |
59 |
58
|
ad2antrr |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) = S_ [ A -> B ] D _d x ) |
60 |
48 59
|
eqtrd |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) = S_ [ A -> B ] D _d x ) |
61 |
60
|
oveq1d |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
62 |
45 61
|
eqtr3d |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
63 |
16 21 44 62
|
lecasei |
|- ( ( ph /\ A <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
64 |
11
|
adantr |
|- ( ( ph /\ B <_ A ) -> A e. RR ) |
65 |
20
|
adantr |
|- ( ( ph /\ B <_ A ) -> C e. RR ) |
66 |
|
biid |
|- ( ( B <_ A /\ A <_ C ) <-> ( B <_ A /\ A <_ C ) ) |
67 |
1 2 4 3 5 6 7 66
|
ditgsplitlem |
|- ( ( ( ph /\ B <_ A ) /\ A <_ C ) -> S_ [ B -> C ] D _d x = ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) |
68 |
67
|
oveq2d |
|- ( ( ( ph /\ B <_ A ) /\ A <_ C ) -> ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) ) |
69 |
1 2 3 4 6 7
|
ditgswap |
|- ( ph -> S_ [ B -> A ] D _d x = -u S_ [ A -> B ] D _d x ) |
70 |
69
|
oveq2d |
|- ( ph -> ( S_ [ A -> B ] D _d x + S_ [ B -> A ] D _d x ) = ( S_ [ A -> B ] D _d x + -u S_ [ A -> B ] D _d x ) ) |
71 |
55
|
negidd |
|- ( ph -> ( S_ [ A -> B ] D _d x + -u S_ [ A -> B ] D _d x ) = 0 ) |
72 |
70 71
|
eqtrd |
|- ( ph -> ( S_ [ A -> B ] D _d x + S_ [ B -> A ] D _d x ) = 0 ) |
73 |
72
|
oveq1d |
|- ( ph -> ( ( S_ [ A -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = ( 0 + S_ [ A -> C ] D _d x ) ) |
74 |
1 2 4 3 6 7
|
ditgcl |
|- ( ph -> S_ [ B -> A ] D _d x e. CC ) |
75 |
55 74 30
|
addassd |
|- ( ph -> ( ( S_ [ A -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) ) |
76 |
30
|
addid2d |
|- ( ph -> ( 0 + S_ [ A -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
77 |
73 75 76
|
3eqtr3d |
|- ( ph -> ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) = S_ [ A -> C ] D _d x ) |
78 |
77
|
ad2antrr |
|- ( ( ( ph /\ B <_ A ) /\ A <_ C ) -> ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) = S_ [ A -> C ] D _d x ) |
79 |
68 78
|
eqtr2d |
|- ( ( ( ph /\ B <_ A ) /\ A <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
80 |
15
|
ad2antrr |
|- ( ( ( ph /\ B <_ A ) /\ C <_ A ) -> B e. RR ) |
81 |
20
|
ad2antrr |
|- ( ( ( ph /\ B <_ A ) /\ C <_ A ) -> C e. RR ) |
82 |
|
ancom |
|- ( ( C <_ A /\ B <_ C ) <-> ( B <_ C /\ C <_ A ) ) |
83 |
1 2 4 5 3 6 7 82
|
ditgsplitlem |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> S_ [ B -> A ] D _d x = ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) ) |
84 |
83
|
oveq1d |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) = ( ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> C ] D _d x ) ) |
85 |
32 54 30
|
addassd |
|- ( ph -> ( ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = ( S_ [ B -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> C ] D _d x ) ) ) |
86 |
1 2 5 3 6 7
|
ditgswap |
|- ( ph -> S_ [ A -> C ] D _d x = -u S_ [ C -> A ] D _d x ) |
87 |
86
|
oveq2d |
|- ( ph -> ( S_ [ C -> A ] D _d x + S_ [ A -> C ] D _d x ) = ( S_ [ C -> A ] D _d x + -u S_ [ C -> A ] D _d x ) ) |
88 |
54
|
negidd |
|- ( ph -> ( S_ [ C -> A ] D _d x + -u S_ [ C -> A ] D _d x ) = 0 ) |
89 |
87 88
|
eqtrd |
|- ( ph -> ( S_ [ C -> A ] D _d x + S_ [ A -> C ] D _d x ) = 0 ) |
90 |
89
|
oveq2d |
|- ( ph -> ( S_ [ B -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> C ] D _d x ) ) = ( S_ [ B -> C ] D _d x + 0 ) ) |
91 |
32
|
addid1d |
|- ( ph -> ( S_ [ B -> C ] D _d x + 0 ) = S_ [ B -> C ] D _d x ) |
92 |
85 90 91
|
3eqtrd |
|- ( ph -> ( ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = S_ [ B -> C ] D _d x ) |
93 |
92
|
ad2antrr |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> ( ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = S_ [ B -> C ] D _d x ) |
94 |
84 93
|
eqtr2d |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> S_ [ B -> C ] D _d x = ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) |
95 |
94
|
oveq2d |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) ) |
96 |
77
|
ad2antrr |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) = S_ [ A -> C ] D _d x ) |
97 |
95 96
|
eqtr2d |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
98 |
97
|
adantllr |
|- ( ( ( ( ph /\ B <_ A ) /\ C <_ A ) /\ B <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
99 |
|
ancom |
|- ( ( B <_ A /\ C <_ B ) <-> ( C <_ B /\ B <_ A ) ) |
100 |
1 2 5 4 3 6 7 99
|
ditgsplitlem |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> S_ [ C -> A ] D _d x = ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) ) |
101 |
100
|
oveq1d |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) = ( ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> B ] D _d x ) ) |
102 |
31 74 55
|
addassd |
|- ( ph -> ( ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = ( S_ [ C -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> B ] D _d x ) ) ) |
103 |
1 2 4 3 6 7
|
ditgswap |
|- ( ph -> S_ [ A -> B ] D _d x = -u S_ [ B -> A ] D _d x ) |
104 |
103
|
oveq2d |
|- ( ph -> ( S_ [ B -> A ] D _d x + S_ [ A -> B ] D _d x ) = ( S_ [ B -> A ] D _d x + -u S_ [ B -> A ] D _d x ) ) |
105 |
74
|
negidd |
|- ( ph -> ( S_ [ B -> A ] D _d x + -u S_ [ B -> A ] D _d x ) = 0 ) |
106 |
104 105
|
eqtrd |
|- ( ph -> ( S_ [ B -> A ] D _d x + S_ [ A -> B ] D _d x ) = 0 ) |
107 |
106
|
oveq2d |
|- ( ph -> ( S_ [ C -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> B ] D _d x ) ) = ( S_ [ C -> B ] D _d x + 0 ) ) |
108 |
31
|
addid1d |
|- ( ph -> ( S_ [ C -> B ] D _d x + 0 ) = S_ [ C -> B ] D _d x ) |
109 |
102 107 108
|
3eqtrd |
|- ( ph -> ( ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = S_ [ C -> B ] D _d x ) |
110 |
109
|
ad2antrr |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = S_ [ C -> B ] D _d x ) |
111 |
101 110
|
eqtr2d |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> S_ [ C -> B ] D _d x = ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) |
112 |
111
|
oveq2d |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) = ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) ) |
113 |
58
|
ad2antrr |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) = S_ [ A -> B ] D _d x ) |
114 |
112 113
|
eqtr2d |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> S_ [ A -> B ] D _d x = ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) ) |
115 |
114
|
oveq1d |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) ) |
116 |
40
|
ad2antrr |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
117 |
115 116
|
eqtr2d |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
118 |
117
|
adantlr |
|- ( ( ( ( ph /\ B <_ A ) /\ C <_ A ) /\ C <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
119 |
80 81 98 118
|
lecasei |
|- ( ( ( ph /\ B <_ A ) /\ C <_ A ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
120 |
64 65 79 119
|
lecasei |
|- ( ( ph /\ B <_ A ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
121 |
11 15 63 120
|
lecasei |
|- ( ph -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |