Metamath Proof Explorer


Theorem div0

Description: Division into zero is zero. (Contributed by NM, 14-Mar-2005)

Ref Expression
Assertion div0
|- ( ( A e. CC /\ A =/= 0 ) -> ( 0 / A ) = 0 )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( A e. CC /\ A =/= 0 ) -> A e. CC )
2 1 mul01d
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( A x. 0 ) = 0 )
3 0cn
 |-  0 e. CC
4 divmul
 |-  ( ( 0 e. CC /\ 0 e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( 0 / A ) = 0 <-> ( A x. 0 ) = 0 ) )
5 3 3 4 mp3an12
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( 0 / A ) = 0 <-> ( A x. 0 ) = 0 ) )
6 2 5 mpbird
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( 0 / A ) = 0 )