Description: Division into zero is zero. (Contributed by NM, 14-Mar-2005) (Proof shortened by SN, 9-Jul-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | div0 | |- ( ( A e. CC /\ A =/= 0 ) -> ( 0 / A ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn | |- 0 e. CC |
|
2 | eqid | |- 0 = 0 |
|
3 | diveq0 | |- ( ( 0 e. CC /\ A e. CC /\ A =/= 0 ) -> ( ( 0 / A ) = 0 <-> 0 = 0 ) ) |
|
4 | 2 3 | mpbiri | |- ( ( 0 e. CC /\ A e. CC /\ A =/= 0 ) -> ( 0 / A ) = 0 ) |
5 | 1 4 | mp3an1 | |- ( ( A e. CC /\ A =/= 0 ) -> ( 0 / A ) = 0 ) |