Metamath Proof Explorer


Theorem div0

Description: Division into zero is zero. (Contributed by NM, 14-Mar-2005) (Proof shortened by SN, 9-Jul-2025)

Ref Expression
Assertion div0
|- ( ( A e. CC /\ A =/= 0 ) -> ( 0 / A ) = 0 )

Proof

Step Hyp Ref Expression
1 0cn
 |-  0 e. CC
2 eqid
 |-  0 = 0
3 diveq0
 |-  ( ( 0 e. CC /\ A e. CC /\ A =/= 0 ) -> ( ( 0 / A ) = 0 <-> 0 = 0 ) )
4 2 3 mpbiri
 |-  ( ( 0 e. CC /\ A e. CC /\ A =/= 0 ) -> ( 0 / A ) = 0 )
5 1 4 mp3an1
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( 0 / A ) = 0 )