| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divcl |
|- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( B / C ) e. CC ) |
| 2 |
1
|
3expb |
|- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) e. CC ) |
| 3 |
2
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) e. CC ) |
| 4 |
|
divmul3 |
|- ( ( A e. CC /\ ( B / C ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = ( B / C ) <-> A = ( ( B / C ) x. C ) ) ) |
| 5 |
3 4
|
syld3an2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = ( B / C ) <-> A = ( ( B / C ) x. C ) ) ) |
| 6 |
|
divcan1 |
|- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( ( B / C ) x. C ) = B ) |
| 7 |
6
|
3expb |
|- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B / C ) x. C ) = B ) |
| 8 |
7
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B / C ) x. C ) = B ) |
| 9 |
8
|
eqeq2d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A = ( ( B / C ) x. C ) <-> A = B ) ) |
| 10 |
5 9
|
bitrd |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = ( B / C ) <-> A = B ) ) |