Description: One-to-one relationship for division. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | div1d.1 | |- ( ph -> A e. CC ) |
|
divcld.2 | |- ( ph -> B e. CC ) |
||
divmuld.3 | |- ( ph -> C e. CC ) |
||
divassd.4 | |- ( ph -> C =/= 0 ) |
||
div11d.5 | |- ( ph -> ( A / C ) = ( B / C ) ) |
||
Assertion | div11d | |- ( ph -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | |- ( ph -> A e. CC ) |
|
2 | divcld.2 | |- ( ph -> B e. CC ) |
|
3 | divmuld.3 | |- ( ph -> C e. CC ) |
|
4 | divassd.4 | |- ( ph -> C =/= 0 ) |
|
5 | div11d.5 | |- ( ph -> ( A / C ) = ( B / C ) ) |
|
6 | div11 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = ( B / C ) <-> A = B ) ) |
|
7 | 1 2 3 4 6 | syl112anc | |- ( ph -> ( ( A / C ) = ( B / C ) <-> A = B ) ) |
8 | 5 7 | mpbid | |- ( ph -> A = B ) |