Step |
Hyp |
Ref |
Expression |
1 |
|
divcl |
|- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( B / C ) e. CC ) |
2 |
1
|
3expb |
|- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) e. CC ) |
3 |
|
mulcom |
|- ( ( A e. CC /\ ( B / C ) e. CC ) -> ( A x. ( B / C ) ) = ( ( B / C ) x. A ) ) |
4 |
2 3
|
sylan2 |
|- ( ( A e. CC /\ ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( A x. ( B / C ) ) = ( ( B / C ) x. A ) ) |
5 |
4
|
3impb |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. ( B / C ) ) = ( ( B / C ) x. A ) ) |
6 |
|
div13 |
|- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) /\ A e. CC ) -> ( ( B / C ) x. A ) = ( ( A / C ) x. B ) ) |
7 |
6
|
3comr |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B / C ) x. A ) = ( ( A / C ) x. B ) ) |
8 |
|
divcl |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
9 |
8
|
3expb |
|- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
10 |
|
mulcom |
|- ( ( ( A / C ) e. CC /\ B e. CC ) -> ( ( A / C ) x. B ) = ( B x. ( A / C ) ) ) |
11 |
9 10
|
stoic3 |
|- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) /\ B e. CC ) -> ( ( A / C ) x. B ) = ( B x. ( A / C ) ) ) |
12 |
11
|
3com23 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) x. B ) = ( B x. ( A / C ) ) ) |
13 |
5 7 12
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. ( B / C ) ) = ( B x. ( A / C ) ) ) |