| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulcom |
|- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
| 2 |
1
|
oveq1d |
|- ( ( A e. CC /\ C e. CC ) -> ( ( A x. C ) / B ) = ( ( C x. A ) / B ) ) |
| 3 |
2
|
3adant2 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A x. C ) / B ) = ( ( C x. A ) / B ) ) |
| 4 |
|
div23 |
|- ( ( A e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A x. C ) / B ) = ( ( A / B ) x. C ) ) |
| 5 |
4
|
3com23 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A x. C ) / B ) = ( ( A / B ) x. C ) ) |
| 6 |
|
div23 |
|- ( ( C e. CC /\ A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( C x. A ) / B ) = ( ( C / B ) x. A ) ) |
| 7 |
6
|
3coml |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( C x. A ) / B ) = ( ( C / B ) x. A ) ) |
| 8 |
3 5 7
|
3eqtr3d |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A / B ) x. C ) = ( ( C / B ) x. A ) ) |