Step |
Hyp |
Ref |
Expression |
1 |
|
mulcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
2 |
1
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) / C ) = ( ( B x. A ) / C ) ) |
3 |
2
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( ( B x. A ) / C ) ) |
4 |
|
divass |
|- ( ( B e. CC /\ A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B x. A ) / C ) = ( B x. ( A / C ) ) ) |
5 |
4
|
3com12 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B x. A ) / C ) = ( B x. ( A / C ) ) ) |
6 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
7 |
|
divcl |
|- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
8 |
7
|
3expb |
|- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
9 |
8
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
10 |
6 9
|
mulcomd |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B x. ( A / C ) ) = ( ( A / C ) x. B ) ) |
11 |
3 5 10
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( ( A / C ) x. B ) ) |