Metamath Proof Explorer


Theorem div23i

Description: A commutative/associative law for division. (Contributed by NM, 3-Sep-1999)

Ref Expression
Hypotheses divclz.1
|- A e. CC
divclz.2
|- B e. CC
divmulz.3
|- C e. CC
divass.4
|- C =/= 0
Assertion div23i
|- ( ( A x. B ) / C ) = ( ( A / C ) x. B )

Proof

Step Hyp Ref Expression
1 divclz.1
 |-  A e. CC
2 divclz.2
 |-  B e. CC
3 divmulz.3
 |-  C e. CC
4 divass.4
 |-  C =/= 0
5 3 4 pm3.2i
 |-  ( C e. CC /\ C =/= 0 )
6 div23
 |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( ( A / C ) x. B ) )
7 1 2 5 6 mp3an
 |-  ( ( A x. B ) / C ) = ( ( A / C ) x. B )