Description: A commutative/associative law for division. (Contributed by NM, 3-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divclz.1 | |- A e. CC | |
| divclz.2 | |- B e. CC | ||
| divmulz.3 | |- C e. CC | ||
| divass.4 | |- C =/= 0 | ||
| Assertion | div23i | |- ( ( A x. B ) / C ) = ( ( A / C ) x. B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | divclz.1 | |- A e. CC | |
| 2 | divclz.2 | |- B e. CC | |
| 3 | divmulz.3 | |- C e. CC | |
| 4 | divass.4 | |- C =/= 0 | |
| 5 | 3 4 | pm3.2i | |- ( C e. CC /\ C =/= 0 ) | 
| 6 | div23 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( ( A / C ) x. B ) ) | |
| 7 | 1 2 5 6 | mp3an | |- ( ( A x. B ) / C ) = ( ( A / C ) x. B ) |