Step |
Hyp |
Ref |
Expression |
1 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
2 |
|
subcl |
|- ( ( C e. CC /\ D e. CC ) -> ( C - D ) e. CC ) |
3 |
2
|
3adant3 |
|- ( ( C e. CC /\ D e. CC /\ C =/= D ) -> ( C - D ) e. CC ) |
4 |
|
subeq0 |
|- ( ( C e. CC /\ D e. CC ) -> ( ( C - D ) = 0 <-> C = D ) ) |
5 |
4
|
necon3bid |
|- ( ( C e. CC /\ D e. CC ) -> ( ( C - D ) =/= 0 <-> C =/= D ) ) |
6 |
5
|
biimp3ar |
|- ( ( C e. CC /\ D e. CC /\ C =/= D ) -> ( C - D ) =/= 0 ) |
7 |
3 6
|
jca |
|- ( ( C e. CC /\ D e. CC /\ C =/= D ) -> ( ( C - D ) e. CC /\ ( C - D ) =/= 0 ) ) |
8 |
|
div2neg |
|- ( ( ( A - B ) e. CC /\ ( C - D ) e. CC /\ ( C - D ) =/= 0 ) -> ( -u ( A - B ) / -u ( C - D ) ) = ( ( A - B ) / ( C - D ) ) ) |
9 |
8
|
3expb |
|- ( ( ( A - B ) e. CC /\ ( ( C - D ) e. CC /\ ( C - D ) =/= 0 ) ) -> ( -u ( A - B ) / -u ( C - D ) ) = ( ( A - B ) / ( C - D ) ) ) |
10 |
1 7 9
|
syl2an |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC /\ C =/= D ) ) -> ( -u ( A - B ) / -u ( C - D ) ) = ( ( A - B ) / ( C - D ) ) ) |
11 |
|
negsubdi2 |
|- ( ( A e. CC /\ B e. CC ) -> -u ( A - B ) = ( B - A ) ) |
12 |
|
negsubdi2 |
|- ( ( C e. CC /\ D e. CC ) -> -u ( C - D ) = ( D - C ) ) |
13 |
12
|
3adant3 |
|- ( ( C e. CC /\ D e. CC /\ C =/= D ) -> -u ( C - D ) = ( D - C ) ) |
14 |
11 13
|
oveqan12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC /\ C =/= D ) ) -> ( -u ( A - B ) / -u ( C - D ) ) = ( ( B - A ) / ( D - C ) ) ) |
15 |
10 14
|
eqtr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC /\ C =/= D ) ) -> ( ( A - B ) / ( C - D ) ) = ( ( B - A ) / ( D - C ) ) ) |