| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							subcl | 
							 |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC )  | 
						
						
							| 2 | 
							
								
							 | 
							subcl | 
							 |-  ( ( C e. CC /\ D e. CC ) -> ( C - D ) e. CC )  | 
						
						
							| 3 | 
							
								2
							 | 
							3adant3 | 
							 |-  ( ( C e. CC /\ D e. CC /\ C =/= D ) -> ( C - D ) e. CC )  | 
						
						
							| 4 | 
							
								
							 | 
							subeq0 | 
							 |-  ( ( C e. CC /\ D e. CC ) -> ( ( C - D ) = 0 <-> C = D ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							necon3bid | 
							 |-  ( ( C e. CC /\ D e. CC ) -> ( ( C - D ) =/= 0 <-> C =/= D ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							biimp3ar | 
							 |-  ( ( C e. CC /\ D e. CC /\ C =/= D ) -> ( C - D ) =/= 0 )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							jca | 
							 |-  ( ( C e. CC /\ D e. CC /\ C =/= D ) -> ( ( C - D ) e. CC /\ ( C - D ) =/= 0 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							div2neg | 
							 |-  ( ( ( A - B ) e. CC /\ ( C - D ) e. CC /\ ( C - D ) =/= 0 ) -> ( -u ( A - B ) / -u ( C - D ) ) = ( ( A - B ) / ( C - D ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3expb | 
							 |-  ( ( ( A - B ) e. CC /\ ( ( C - D ) e. CC /\ ( C - D ) =/= 0 ) ) -> ( -u ( A - B ) / -u ( C - D ) ) = ( ( A - B ) / ( C - D ) ) )  | 
						
						
							| 10 | 
							
								1 7 9
							 | 
							syl2an | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC /\ C =/= D ) ) -> ( -u ( A - B ) / -u ( C - D ) ) = ( ( A - B ) / ( C - D ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							negsubdi2 | 
							 |-  ( ( A e. CC /\ B e. CC ) -> -u ( A - B ) = ( B - A ) )  | 
						
						
							| 12 | 
							
								
							 | 
							negsubdi2 | 
							 |-  ( ( C e. CC /\ D e. CC ) -> -u ( C - D ) = ( D - C ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3adant3 | 
							 |-  ( ( C e. CC /\ D e. CC /\ C =/= D ) -> -u ( C - D ) = ( D - C ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							oveqan12d | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC /\ C =/= D ) ) -> ( -u ( A - B ) / -u ( C - D ) ) = ( ( B - A ) / ( D - C ) ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							eqtr3d | 
							 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC /\ C =/= D ) ) -> ( ( A - B ) / ( C - D ) ) = ( ( B - A ) / ( D - C ) ) )  |