Metamath Proof Explorer


Theorem div32

Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion div32
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A / B ) x. C ) = ( A x. ( C / B ) ) )

Proof

Step Hyp Ref Expression
1 div23
 |-  ( ( A e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A x. C ) / B ) = ( ( A / B ) x. C ) )
2 divass
 |-  ( ( A e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A x. C ) / B ) = ( A x. ( C / B ) ) )
3 1 2 eqtr3d
 |-  ( ( A e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) x. C ) = ( A x. ( C / B ) ) )
4 3 3com23
 |-  ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A / B ) x. C ) = ( A x. ( C / B ) ) )