Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | div32 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A / B ) x. C ) = ( A x. ( C / B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div23 | |- ( ( A e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A x. C ) / B ) = ( ( A / B ) x. C ) ) |
|
2 | divass | |- ( ( A e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A x. C ) / B ) = ( A x. ( C / B ) ) ) |
|
3 | 1 2 | eqtr3d | |- ( ( A e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) x. C ) = ( A x. ( C / B ) ) ) |
4 | 3 | 3com23 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A / B ) x. C ) = ( A x. ( C / B ) ) ) |