Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | div1d.1 | |- ( ph -> A e. CC ) |
|
| divcld.2 | |- ( ph -> B e. CC ) |
||
| divmuld.3 | |- ( ph -> C e. CC ) |
||
| divmuld.4 | |- ( ph -> B =/= 0 ) |
||
| Assertion | div32d | |- ( ph -> ( ( A / B ) x. C ) = ( A x. ( C / B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | |- ( ph -> A e. CC ) |
|
| 2 | divcld.2 | |- ( ph -> B e. CC ) |
|
| 3 | divmuld.3 | |- ( ph -> C e. CC ) |
|
| 4 | divmuld.4 | |- ( ph -> B =/= 0 ) |
|
| 5 | div32 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A / B ) x. C ) = ( A x. ( C / B ) ) ) |
|
| 6 | 1 2 4 3 5 | syl121anc | |- ( ph -> ( ( A / B ) x. C ) = ( A x. ( C / B ) ) ) |