| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 6re |  |-  6 e. RR | 
						
							| 2 | 1 | a1i |  |-  ( N e. RR -> 6 e. RR ) | 
						
							| 3 |  | id |  |-  ( N e. RR -> N e. RR ) | 
						
							| 4 | 2 3 3 | leadd2d |  |-  ( N e. RR -> ( 6 <_ N <-> ( N + 6 ) <_ ( N + N ) ) ) | 
						
							| 5 | 4 | biimpa |  |-  ( ( N e. RR /\ 6 <_ N ) -> ( N + 6 ) <_ ( N + N ) ) | 
						
							| 6 |  | recn |  |-  ( N e. RR -> N e. CC ) | 
						
							| 7 | 6 | times2d |  |-  ( N e. RR -> ( N x. 2 ) = ( N + N ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( N e. RR /\ 6 <_ N ) -> ( N x. 2 ) = ( N + N ) ) | 
						
							| 9 | 5 8 | breqtrrd |  |-  ( ( N e. RR /\ 6 <_ N ) -> ( N + 6 ) <_ ( N x. 2 ) ) | 
						
							| 10 |  | 4cn |  |-  4 e. CC | 
						
							| 11 | 10 | a1i |  |-  ( N e. RR -> 4 e. CC ) | 
						
							| 12 |  | 2cn |  |-  2 e. CC | 
						
							| 13 | 12 | a1i |  |-  ( N e. RR -> 2 e. CC ) | 
						
							| 14 | 6 11 13 | addassd |  |-  ( N e. RR -> ( ( N + 4 ) + 2 ) = ( N + ( 4 + 2 ) ) ) | 
						
							| 15 |  | 4p2e6 |  |-  ( 4 + 2 ) = 6 | 
						
							| 16 | 15 | oveq2i |  |-  ( N + ( 4 + 2 ) ) = ( N + 6 ) | 
						
							| 17 | 14 16 | eqtrdi |  |-  ( N e. RR -> ( ( N + 4 ) + 2 ) = ( N + 6 ) ) | 
						
							| 18 | 17 | breq1d |  |-  ( N e. RR -> ( ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) <-> ( N + 6 ) <_ ( N x. 2 ) ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( N e. RR /\ 6 <_ N ) -> ( ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) <-> ( N + 6 ) <_ ( N x. 2 ) ) ) | 
						
							| 20 | 9 19 | mpbird |  |-  ( ( N e. RR /\ 6 <_ N ) -> ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) ) | 
						
							| 21 |  | 4re |  |-  4 e. RR | 
						
							| 22 | 21 | a1i |  |-  ( N e. RR -> 4 e. RR ) | 
						
							| 23 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 24 | 23 | a1i |  |-  ( N e. RR -> 4 =/= 0 ) | 
						
							| 25 | 3 22 24 | redivcld |  |-  ( N e. RR -> ( N / 4 ) e. RR ) | 
						
							| 26 |  | peano2re |  |-  ( ( N / 4 ) e. RR -> ( ( N / 4 ) + 1 ) e. RR ) | 
						
							| 27 | 25 26 | syl |  |-  ( N e. RR -> ( ( N / 4 ) + 1 ) e. RR ) | 
						
							| 28 |  | peano2rem |  |-  ( N e. RR -> ( N - 1 ) e. RR ) | 
						
							| 29 | 28 | rehalfcld |  |-  ( N e. RR -> ( ( N - 1 ) / 2 ) e. RR ) | 
						
							| 30 |  | 4pos |  |-  0 < 4 | 
						
							| 31 | 21 30 | pm3.2i |  |-  ( 4 e. RR /\ 0 < 4 ) | 
						
							| 32 | 31 | a1i |  |-  ( N e. RR -> ( 4 e. RR /\ 0 < 4 ) ) | 
						
							| 33 |  | lemul1 |  |-  ( ( ( ( N / 4 ) + 1 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) <-> ( ( ( N / 4 ) + 1 ) x. 4 ) <_ ( ( ( N - 1 ) / 2 ) x. 4 ) ) ) | 
						
							| 34 | 27 29 32 33 | syl3anc |  |-  ( N e. RR -> ( ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) <-> ( ( ( N / 4 ) + 1 ) x. 4 ) <_ ( ( ( N - 1 ) / 2 ) x. 4 ) ) ) | 
						
							| 35 | 25 | recnd |  |-  ( N e. RR -> ( N / 4 ) e. CC ) | 
						
							| 36 |  | 1cnd |  |-  ( N e. RR -> 1 e. CC ) | 
						
							| 37 | 6 11 24 | divcan1d |  |-  ( N e. RR -> ( ( N / 4 ) x. 4 ) = N ) | 
						
							| 38 | 10 | mullidi |  |-  ( 1 x. 4 ) = 4 | 
						
							| 39 | 38 | a1i |  |-  ( N e. RR -> ( 1 x. 4 ) = 4 ) | 
						
							| 40 | 37 39 | oveq12d |  |-  ( N e. RR -> ( ( ( N / 4 ) x. 4 ) + ( 1 x. 4 ) ) = ( N + 4 ) ) | 
						
							| 41 | 35 11 36 40 | joinlmuladdmuld |  |-  ( N e. RR -> ( ( ( N / 4 ) + 1 ) x. 4 ) = ( N + 4 ) ) | 
						
							| 42 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 43 | 42 | eqcomi |  |-  4 = ( 2 x. 2 ) | 
						
							| 44 | 43 | a1i |  |-  ( N e. RR -> 4 = ( 2 x. 2 ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( N e. RR -> ( ( ( N - 1 ) / 2 ) x. 4 ) = ( ( ( N - 1 ) / 2 ) x. ( 2 x. 2 ) ) ) | 
						
							| 46 | 29 | recnd |  |-  ( N e. RR -> ( ( N - 1 ) / 2 ) e. CC ) | 
						
							| 47 |  | mulass |  |-  ( ( ( ( N - 1 ) / 2 ) e. CC /\ 2 e. CC /\ 2 e. CC ) -> ( ( ( ( N - 1 ) / 2 ) x. 2 ) x. 2 ) = ( ( ( N - 1 ) / 2 ) x. ( 2 x. 2 ) ) ) | 
						
							| 48 | 47 | eqcomd |  |-  ( ( ( ( N - 1 ) / 2 ) e. CC /\ 2 e. CC /\ 2 e. CC ) -> ( ( ( N - 1 ) / 2 ) x. ( 2 x. 2 ) ) = ( ( ( ( N - 1 ) / 2 ) x. 2 ) x. 2 ) ) | 
						
							| 49 | 46 13 13 48 | syl3anc |  |-  ( N e. RR -> ( ( ( N - 1 ) / 2 ) x. ( 2 x. 2 ) ) = ( ( ( ( N - 1 ) / 2 ) x. 2 ) x. 2 ) ) | 
						
							| 50 | 28 | recnd |  |-  ( N e. RR -> ( N - 1 ) e. CC ) | 
						
							| 51 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 52 | 51 | a1i |  |-  ( N e. RR -> 2 =/= 0 ) | 
						
							| 53 | 50 13 52 | divcan1d |  |-  ( N e. RR -> ( ( ( N - 1 ) / 2 ) x. 2 ) = ( N - 1 ) ) | 
						
							| 54 | 53 | oveq1d |  |-  ( N e. RR -> ( ( ( ( N - 1 ) / 2 ) x. 2 ) x. 2 ) = ( ( N - 1 ) x. 2 ) ) | 
						
							| 55 | 6 36 13 | subdird |  |-  ( N e. RR -> ( ( N - 1 ) x. 2 ) = ( ( N x. 2 ) - ( 1 x. 2 ) ) ) | 
						
							| 56 | 12 | mullidi |  |-  ( 1 x. 2 ) = 2 | 
						
							| 57 | 56 | a1i |  |-  ( N e. RR -> ( 1 x. 2 ) = 2 ) | 
						
							| 58 | 57 | oveq2d |  |-  ( N e. RR -> ( ( N x. 2 ) - ( 1 x. 2 ) ) = ( ( N x. 2 ) - 2 ) ) | 
						
							| 59 | 54 55 58 | 3eqtrd |  |-  ( N e. RR -> ( ( ( ( N - 1 ) / 2 ) x. 2 ) x. 2 ) = ( ( N x. 2 ) - 2 ) ) | 
						
							| 60 | 45 49 59 | 3eqtrd |  |-  ( N e. RR -> ( ( ( N - 1 ) / 2 ) x. 4 ) = ( ( N x. 2 ) - 2 ) ) | 
						
							| 61 | 41 60 | breq12d |  |-  ( N e. RR -> ( ( ( ( N / 4 ) + 1 ) x. 4 ) <_ ( ( ( N - 1 ) / 2 ) x. 4 ) <-> ( N + 4 ) <_ ( ( N x. 2 ) - 2 ) ) ) | 
						
							| 62 | 3 22 | readdcld |  |-  ( N e. RR -> ( N + 4 ) e. RR ) | 
						
							| 63 |  | 2re |  |-  2 e. RR | 
						
							| 64 | 63 | a1i |  |-  ( N e. RR -> 2 e. RR ) | 
						
							| 65 | 3 64 | remulcld |  |-  ( N e. RR -> ( N x. 2 ) e. RR ) | 
						
							| 66 |  | leaddsub |  |-  ( ( ( N + 4 ) e. RR /\ 2 e. RR /\ ( N x. 2 ) e. RR ) -> ( ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) <-> ( N + 4 ) <_ ( ( N x. 2 ) - 2 ) ) ) | 
						
							| 67 | 66 | bicomd |  |-  ( ( ( N + 4 ) e. RR /\ 2 e. RR /\ ( N x. 2 ) e. RR ) -> ( ( N + 4 ) <_ ( ( N x. 2 ) - 2 ) <-> ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) ) ) | 
						
							| 68 | 62 64 65 67 | syl3anc |  |-  ( N e. RR -> ( ( N + 4 ) <_ ( ( N x. 2 ) - 2 ) <-> ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) ) ) | 
						
							| 69 | 34 61 68 | 3bitrd |  |-  ( N e. RR -> ( ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) <-> ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( N e. RR /\ 6 <_ N ) -> ( ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) <-> ( ( N + 4 ) + 2 ) <_ ( N x. 2 ) ) ) | 
						
							| 71 | 20 70 | mpbird |  |-  ( ( N e. RR /\ 6 <_ N ) -> ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |