Description: Addition of two ratios. Theorem I.13 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | div1d.1 | |- ( ph -> A e. CC ) | |
| divcld.2 | |- ( ph -> B e. CC ) | ||
| divmuld.3 | |- ( ph -> C e. CC ) | ||
| divmuldivd.4 | |- ( ph -> D e. CC ) | ||
| divmuldivd.5 | |- ( ph -> B =/= 0 ) | ||
| divmuldivd.6 | |- ( ph -> D =/= 0 ) | ||
| Assertion | divadddivd | |- ( ph -> ( ( A / B ) + ( C / D ) ) = ( ( ( A x. D ) + ( C x. B ) ) / ( B x. D ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | div1d.1 | |- ( ph -> A e. CC ) | |
| 2 | divcld.2 | |- ( ph -> B e. CC ) | |
| 3 | divmuld.3 | |- ( ph -> C e. CC ) | |
| 4 | divmuldivd.4 | |- ( ph -> D e. CC ) | |
| 5 | divmuldivd.5 | |- ( ph -> B =/= 0 ) | |
| 6 | divmuldivd.6 | |- ( ph -> D =/= 0 ) | |
| 7 | 2 5 | jca | |- ( ph -> ( B e. CC /\ B =/= 0 ) ) | 
| 8 | 4 6 | jca | |- ( ph -> ( D e. CC /\ D =/= 0 ) ) | 
| 9 | divadddiv | |- ( ( ( A e. CC /\ C e. CC ) /\ ( ( B e. CC /\ B =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / B ) + ( C / D ) ) = ( ( ( A x. D ) + ( C x. B ) ) / ( B x. D ) ) ) | |
| 10 | 1 3 7 8 9 | syl22anc | |- ( ph -> ( ( A / B ) + ( C / D ) ) = ( ( ( A x. D ) + ( C x. B ) ) / ( B x. D ) ) ) |