Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
|- ( N = if ( N e. ZZ , N , 1 ) -> ( N = ( ( q x. D ) + r ) <-> if ( N e. ZZ , N , 1 ) = ( ( q x. D ) + r ) ) ) |
2 |
1
|
3anbi3d |
|- ( N = if ( N e. ZZ , N , 1 ) -> ( ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> ( 0 <_ r /\ r < ( abs ` D ) /\ if ( N e. ZZ , N , 1 ) = ( ( q x. D ) + r ) ) ) ) |
3 |
2
|
rexbidv |
|- ( N = if ( N e. ZZ , N , 1 ) -> ( E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ if ( N e. ZZ , N , 1 ) = ( ( q x. D ) + r ) ) ) ) |
4 |
3
|
reubidv |
|- ( N = if ( N e. ZZ , N , 1 ) -> ( E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ if ( N e. ZZ , N , 1 ) = ( ( q x. D ) + r ) ) ) ) |
5 |
|
fveq2 |
|- ( D = if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) -> ( abs ` D ) = ( abs ` if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) ) ) |
6 |
5
|
breq2d |
|- ( D = if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) -> ( r < ( abs ` D ) <-> r < ( abs ` if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) ) ) ) |
7 |
|
oveq2 |
|- ( D = if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) -> ( q x. D ) = ( q x. if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) ) ) |
8 |
7
|
oveq1d |
|- ( D = if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) -> ( ( q x. D ) + r ) = ( ( q x. if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) ) + r ) ) |
9 |
8
|
eqeq2d |
|- ( D = if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) -> ( if ( N e. ZZ , N , 1 ) = ( ( q x. D ) + r ) <-> if ( N e. ZZ , N , 1 ) = ( ( q x. if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) ) + r ) ) ) |
10 |
6 9
|
3anbi23d |
|- ( D = if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) -> ( ( 0 <_ r /\ r < ( abs ` D ) /\ if ( N e. ZZ , N , 1 ) = ( ( q x. D ) + r ) ) <-> ( 0 <_ r /\ r < ( abs ` if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) ) /\ if ( N e. ZZ , N , 1 ) = ( ( q x. if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) ) + r ) ) ) ) |
11 |
10
|
rexbidv |
|- ( D = if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) -> ( E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ if ( N e. ZZ , N , 1 ) = ( ( q x. D ) + r ) ) <-> E. q e. ZZ ( 0 <_ r /\ r < ( abs ` if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) ) /\ if ( N e. ZZ , N , 1 ) = ( ( q x. if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) ) + r ) ) ) ) |
12 |
11
|
reubidv |
|- ( D = if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) -> ( E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ if ( N e. ZZ , N , 1 ) = ( ( q x. D ) + r ) ) <-> E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) ) /\ if ( N e. ZZ , N , 1 ) = ( ( q x. if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) ) + r ) ) ) ) |
13 |
|
1z |
|- 1 e. ZZ |
14 |
13
|
elimel |
|- if ( N e. ZZ , N , 1 ) e. ZZ |
15 |
|
simpl |
|- ( ( D e. ZZ /\ D =/= 0 ) -> D e. ZZ ) |
16 |
|
eleq1 |
|- ( D = if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) -> ( D e. ZZ <-> if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) e. ZZ ) ) |
17 |
|
eleq1 |
|- ( 1 = if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) -> ( 1 e. ZZ <-> if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) e. ZZ ) ) |
18 |
15 16 17 13
|
elimdhyp |
|- if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) e. ZZ |
19 |
|
simpr |
|- ( ( D e. ZZ /\ D =/= 0 ) -> D =/= 0 ) |
20 |
|
neeq1 |
|- ( D = if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) -> ( D =/= 0 <-> if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) =/= 0 ) ) |
21 |
|
neeq1 |
|- ( 1 = if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) -> ( 1 =/= 0 <-> if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) =/= 0 ) ) |
22 |
|
ax-1ne0 |
|- 1 =/= 0 |
23 |
19 20 21 22
|
elimdhyp |
|- if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) =/= 0 |
24 |
|
eqid |
|- { r e. NN0 | if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) || ( if ( N e. ZZ , N , 1 ) - r ) } = { r e. NN0 | if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) || ( if ( N e. ZZ , N , 1 ) - r ) } |
25 |
14 18 23 24
|
divalglem10 |
|- E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) ) /\ if ( N e. ZZ , N , 1 ) = ( ( q x. if ( ( D e. ZZ /\ D =/= 0 ) , D , 1 ) ) + r ) ) |
26 |
4 12 25
|
dedth2h |
|- ( ( N e. ZZ /\ ( D e. ZZ /\ D =/= 0 ) ) -> E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) ) |
27 |
26
|
3impb |
|- ( ( N e. ZZ /\ D e. ZZ /\ D =/= 0 ) -> E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) ) |