Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|- ( D e. NN -> D e. ZZ ) |
2 |
|
nnne0 |
|- ( D e. NN -> D =/= 0 ) |
3 |
1 2
|
jca |
|- ( D e. NN -> ( D e. ZZ /\ D =/= 0 ) ) |
4 |
|
divalg |
|- ( ( N e. ZZ /\ D e. ZZ /\ D =/= 0 ) -> E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) ) |
5 |
|
divalgb |
|- ( ( N e. ZZ /\ D e. ZZ /\ D =/= 0 ) -> ( E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) |
6 |
4 5
|
mpbid |
|- ( ( N e. ZZ /\ D e. ZZ /\ D =/= 0 ) -> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) |
7 |
6
|
3expb |
|- ( ( N e. ZZ /\ ( D e. ZZ /\ D =/= 0 ) ) -> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) |
8 |
3 7
|
sylan2 |
|- ( ( N e. ZZ /\ D e. NN ) -> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) |
9 |
|
nnre |
|- ( D e. NN -> D e. RR ) |
10 |
|
nnnn0 |
|- ( D e. NN -> D e. NN0 ) |
11 |
10
|
nn0ge0d |
|- ( D e. NN -> 0 <_ D ) |
12 |
9 11
|
absidd |
|- ( D e. NN -> ( abs ` D ) = D ) |
13 |
12
|
breq2d |
|- ( D e. NN -> ( r < ( abs ` D ) <-> r < D ) ) |
14 |
13
|
anbi1d |
|- ( D e. NN -> ( ( r < ( abs ` D ) /\ D || ( N - r ) ) <-> ( r < D /\ D || ( N - r ) ) ) ) |
15 |
14
|
reubidv |
|- ( D e. NN -> ( E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) <-> E! r e. NN0 ( r < D /\ D || ( N - r ) ) ) ) |
16 |
15
|
adantl |
|- ( ( N e. ZZ /\ D e. NN ) -> ( E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) <-> E! r e. NN0 ( r < D /\ D || ( N - r ) ) ) ) |
17 |
8 16
|
mpbid |
|- ( ( N e. ZZ /\ D e. NN ) -> E! r e. NN0 ( r < D /\ D || ( N - r ) ) ) |