| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-3an |  |-  ( ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ N = ( ( q x. D ) + r ) ) ) | 
						
							| 2 | 1 | rexbii |  |-  ( E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E. q e. ZZ ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ N = ( ( q x. D ) + r ) ) ) | 
						
							| 3 |  | r19.42v |  |-  ( E. q e. ZZ ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ N = ( ( q x. D ) + r ) ) <-> ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + r ) ) ) | 
						
							| 4 | 2 3 | bitri |  |-  ( E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + r ) ) ) | 
						
							| 5 |  | zsubcl |  |-  ( ( N e. ZZ /\ r e. ZZ ) -> ( N - r ) e. ZZ ) | 
						
							| 6 |  | divides |  |-  ( ( D e. ZZ /\ ( N - r ) e. ZZ ) -> ( D || ( N - r ) <-> E. q e. ZZ ( q x. D ) = ( N - r ) ) ) | 
						
							| 7 | 5 6 | sylan2 |  |-  ( ( D e. ZZ /\ ( N e. ZZ /\ r e. ZZ ) ) -> ( D || ( N - r ) <-> E. q e. ZZ ( q x. D ) = ( N - r ) ) ) | 
						
							| 8 | 7 | 3impb |  |-  ( ( D e. ZZ /\ N e. ZZ /\ r e. ZZ ) -> ( D || ( N - r ) <-> E. q e. ZZ ( q x. D ) = ( N - r ) ) ) | 
						
							| 9 | 8 | 3com12 |  |-  ( ( N e. ZZ /\ D e. ZZ /\ r e. ZZ ) -> ( D || ( N - r ) <-> E. q e. ZZ ( q x. D ) = ( N - r ) ) ) | 
						
							| 10 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 11 |  | zcn |  |-  ( r e. ZZ -> r e. CC ) | 
						
							| 12 |  | zmulcl |  |-  ( ( q e. ZZ /\ D e. ZZ ) -> ( q x. D ) e. ZZ ) | 
						
							| 13 | 12 | zcnd |  |-  ( ( q e. ZZ /\ D e. ZZ ) -> ( q x. D ) e. CC ) | 
						
							| 14 |  | subadd |  |-  ( ( N e. CC /\ r e. CC /\ ( q x. D ) e. CC ) -> ( ( N - r ) = ( q x. D ) <-> ( r + ( q x. D ) ) = N ) ) | 
						
							| 15 | 10 11 13 14 | syl3an |  |-  ( ( N e. ZZ /\ r e. ZZ /\ ( q e. ZZ /\ D e. ZZ ) ) -> ( ( N - r ) = ( q x. D ) <-> ( r + ( q x. D ) ) = N ) ) | 
						
							| 16 |  | addcom |  |-  ( ( r e. CC /\ ( q x. D ) e. CC ) -> ( r + ( q x. D ) ) = ( ( q x. D ) + r ) ) | 
						
							| 17 | 11 13 16 | syl2an |  |-  ( ( r e. ZZ /\ ( q e. ZZ /\ D e. ZZ ) ) -> ( r + ( q x. D ) ) = ( ( q x. D ) + r ) ) | 
						
							| 18 | 17 | 3adant1 |  |-  ( ( N e. ZZ /\ r e. ZZ /\ ( q e. ZZ /\ D e. ZZ ) ) -> ( r + ( q x. D ) ) = ( ( q x. D ) + r ) ) | 
						
							| 19 | 18 | eqeq1d |  |-  ( ( N e. ZZ /\ r e. ZZ /\ ( q e. ZZ /\ D e. ZZ ) ) -> ( ( r + ( q x. D ) ) = N <-> ( ( q x. D ) + r ) = N ) ) | 
						
							| 20 | 15 19 | bitrd |  |-  ( ( N e. ZZ /\ r e. ZZ /\ ( q e. ZZ /\ D e. ZZ ) ) -> ( ( N - r ) = ( q x. D ) <-> ( ( q x. D ) + r ) = N ) ) | 
						
							| 21 |  | eqcom |  |-  ( ( N - r ) = ( q x. D ) <-> ( q x. D ) = ( N - r ) ) | 
						
							| 22 |  | eqcom |  |-  ( ( ( q x. D ) + r ) = N <-> N = ( ( q x. D ) + r ) ) | 
						
							| 23 | 20 21 22 | 3bitr3g |  |-  ( ( N e. ZZ /\ r e. ZZ /\ ( q e. ZZ /\ D e. ZZ ) ) -> ( ( q x. D ) = ( N - r ) <-> N = ( ( q x. D ) + r ) ) ) | 
						
							| 24 | 23 | 3expia |  |-  ( ( N e. ZZ /\ r e. ZZ ) -> ( ( q e. ZZ /\ D e. ZZ ) -> ( ( q x. D ) = ( N - r ) <-> N = ( ( q x. D ) + r ) ) ) ) | 
						
							| 25 | 24 | expcomd |  |-  ( ( N e. ZZ /\ r e. ZZ ) -> ( D e. ZZ -> ( q e. ZZ -> ( ( q x. D ) = ( N - r ) <-> N = ( ( q x. D ) + r ) ) ) ) ) | 
						
							| 26 | 25 | 3impia |  |-  ( ( N e. ZZ /\ r e. ZZ /\ D e. ZZ ) -> ( q e. ZZ -> ( ( q x. D ) = ( N - r ) <-> N = ( ( q x. D ) + r ) ) ) ) | 
						
							| 27 | 26 | imp |  |-  ( ( ( N e. ZZ /\ r e. ZZ /\ D e. ZZ ) /\ q e. ZZ ) -> ( ( q x. D ) = ( N - r ) <-> N = ( ( q x. D ) + r ) ) ) | 
						
							| 28 | 27 | rexbidva |  |-  ( ( N e. ZZ /\ r e. ZZ /\ D e. ZZ ) -> ( E. q e. ZZ ( q x. D ) = ( N - r ) <-> E. q e. ZZ N = ( ( q x. D ) + r ) ) ) | 
						
							| 29 | 28 | 3com23 |  |-  ( ( N e. ZZ /\ D e. ZZ /\ r e. ZZ ) -> ( E. q e. ZZ ( q x. D ) = ( N - r ) <-> E. q e. ZZ N = ( ( q x. D ) + r ) ) ) | 
						
							| 30 | 9 29 | bitrd |  |-  ( ( N e. ZZ /\ D e. ZZ /\ r e. ZZ ) -> ( D || ( N - r ) <-> E. q e. ZZ N = ( ( q x. D ) + r ) ) ) | 
						
							| 31 | 30 | anbi2d |  |-  ( ( N e. ZZ /\ D e. ZZ /\ r e. ZZ ) -> ( ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ D || ( N - r ) ) <-> ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + r ) ) ) ) | 
						
							| 32 | 4 31 | bitr4id |  |-  ( ( N e. ZZ /\ D e. ZZ /\ r e. ZZ ) -> ( E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ D || ( N - r ) ) ) ) | 
						
							| 33 |  | anass |  |-  ( ( ( 0 <_ r /\ r < ( abs ` D ) ) /\ D || ( N - r ) ) <-> ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) | 
						
							| 34 | 32 33 | bitrdi |  |-  ( ( N e. ZZ /\ D e. ZZ /\ r e. ZZ ) -> ( E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) | 
						
							| 35 | 34 | 3expa |  |-  ( ( ( N e. ZZ /\ D e. ZZ ) /\ r e. ZZ ) -> ( E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) | 
						
							| 36 | 35 | reubidva |  |-  ( ( N e. ZZ /\ D e. ZZ ) -> ( E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E! r e. ZZ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) | 
						
							| 37 |  | elnn0z |  |-  ( r e. NN0 <-> ( r e. ZZ /\ 0 <_ r ) ) | 
						
							| 38 | 37 | anbi1i |  |-  ( ( r e. NN0 /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) <-> ( ( r e. ZZ /\ 0 <_ r ) /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) | 
						
							| 39 |  | anass |  |-  ( ( ( r e. ZZ /\ 0 <_ r ) /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) <-> ( r e. ZZ /\ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) | 
						
							| 40 | 38 39 | bitri |  |-  ( ( r e. NN0 /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) <-> ( r e. ZZ /\ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) | 
						
							| 41 | 40 | eubii |  |-  ( E! r ( r e. NN0 /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) <-> E! r ( r e. ZZ /\ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) | 
						
							| 42 |  | df-reu |  |-  ( E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) <-> E! r ( r e. NN0 /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) | 
						
							| 43 |  | df-reu |  |-  ( E! r e. ZZ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) <-> E! r ( r e. ZZ /\ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) ) | 
						
							| 44 | 41 42 43 | 3bitr4ri |  |-  ( E! r e. ZZ ( 0 <_ r /\ ( r < ( abs ` D ) /\ D || ( N - r ) ) ) <-> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) | 
						
							| 45 | 36 44 | bitrdi |  |-  ( ( N e. ZZ /\ D e. ZZ ) -> ( E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) | 
						
							| 46 | 45 | 3adant3 |  |-  ( ( N e. ZZ /\ D e. ZZ /\ D =/= 0 ) -> ( E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) |