Step |
Hyp |
Ref |
Expression |
1 |
|
divalglem0.1 |
|- N e. ZZ |
2 |
|
divalglem0.2 |
|- D e. ZZ |
3 |
|
iddvds |
|- ( D e. ZZ -> D || D ) |
4 |
|
dvdsabsb |
|- ( ( D e. ZZ /\ D e. ZZ ) -> ( D || D <-> D || ( abs ` D ) ) ) |
5 |
4
|
anidms |
|- ( D e. ZZ -> ( D || D <-> D || ( abs ` D ) ) ) |
6 |
3 5
|
mpbid |
|- ( D e. ZZ -> D || ( abs ` D ) ) |
7 |
2 6
|
ax-mp |
|- D || ( abs ` D ) |
8 |
|
nn0abscl |
|- ( D e. ZZ -> ( abs ` D ) e. NN0 ) |
9 |
2 8
|
ax-mp |
|- ( abs ` D ) e. NN0 |
10 |
9
|
nn0zi |
|- ( abs ` D ) e. ZZ |
11 |
|
dvdsmultr2 |
|- ( ( D e. ZZ /\ K e. ZZ /\ ( abs ` D ) e. ZZ ) -> ( D || ( abs ` D ) -> D || ( K x. ( abs ` D ) ) ) ) |
12 |
2 10 11
|
mp3an13 |
|- ( K e. ZZ -> ( D || ( abs ` D ) -> D || ( K x. ( abs ` D ) ) ) ) |
13 |
7 12
|
mpi |
|- ( K e. ZZ -> D || ( K x. ( abs ` D ) ) ) |
14 |
13
|
adantl |
|- ( ( R e. ZZ /\ K e. ZZ ) -> D || ( K x. ( abs ` D ) ) ) |
15 |
|
zsubcl |
|- ( ( N e. ZZ /\ R e. ZZ ) -> ( N - R ) e. ZZ ) |
16 |
1 15
|
mpan |
|- ( R e. ZZ -> ( N - R ) e. ZZ ) |
17 |
|
zmulcl |
|- ( ( K e. ZZ /\ ( abs ` D ) e. ZZ ) -> ( K x. ( abs ` D ) ) e. ZZ ) |
18 |
10 17
|
mpan2 |
|- ( K e. ZZ -> ( K x. ( abs ` D ) ) e. ZZ ) |
19 |
|
dvds2add |
|- ( ( D e. ZZ /\ ( N - R ) e. ZZ /\ ( K x. ( abs ` D ) ) e. ZZ ) -> ( ( D || ( N - R ) /\ D || ( K x. ( abs ` D ) ) ) -> D || ( ( N - R ) + ( K x. ( abs ` D ) ) ) ) ) |
20 |
2 16 18 19
|
mp3an3an |
|- ( ( R e. ZZ /\ K e. ZZ ) -> ( ( D || ( N - R ) /\ D || ( K x. ( abs ` D ) ) ) -> D || ( ( N - R ) + ( K x. ( abs ` D ) ) ) ) ) |
21 |
14 20
|
mpan2d |
|- ( ( R e. ZZ /\ K e. ZZ ) -> ( D || ( N - R ) -> D || ( ( N - R ) + ( K x. ( abs ` D ) ) ) ) ) |
22 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
23 |
1 22
|
ax-mp |
|- N e. CC |
24 |
|
zcn |
|- ( R e. ZZ -> R e. CC ) |
25 |
18
|
zcnd |
|- ( K e. ZZ -> ( K x. ( abs ` D ) ) e. CC ) |
26 |
|
subsub |
|- ( ( N e. CC /\ R e. CC /\ ( K x. ( abs ` D ) ) e. CC ) -> ( N - ( R - ( K x. ( abs ` D ) ) ) ) = ( ( N - R ) + ( K x. ( abs ` D ) ) ) ) |
27 |
23 24 25 26
|
mp3an3an |
|- ( ( R e. ZZ /\ K e. ZZ ) -> ( N - ( R - ( K x. ( abs ` D ) ) ) ) = ( ( N - R ) + ( K x. ( abs ` D ) ) ) ) |
28 |
27
|
breq2d |
|- ( ( R e. ZZ /\ K e. ZZ ) -> ( D || ( N - ( R - ( K x. ( abs ` D ) ) ) ) <-> D || ( ( N - R ) + ( K x. ( abs ` D ) ) ) ) ) |
29 |
21 28
|
sylibrd |
|- ( ( R e. ZZ /\ K e. ZZ ) -> ( D || ( N - R ) -> D || ( N - ( R - ( K x. ( abs ` D ) ) ) ) ) ) |