Step |
Hyp |
Ref |
Expression |
1 |
|
divalglem8.1 |
|- N e. ZZ |
2 |
|
divalglem8.2 |
|- D e. ZZ |
3 |
|
divalglem8.3 |
|- D =/= 0 |
4 |
|
divalglem8.4 |
|- S = { r e. NN0 | D || ( N - r ) } |
5 |
|
eqid |
|- inf ( S , RR , < ) = inf ( S , RR , < ) |
6 |
1 2 3 4 5
|
divalglem9 |
|- E! x e. S x < ( abs ` D ) |
7 |
|
elnn0z |
|- ( x e. NN0 <-> ( x e. ZZ /\ 0 <_ x ) ) |
8 |
7
|
anbi2i |
|- ( ( x < ( abs ` D ) /\ x e. NN0 ) <-> ( x < ( abs ` D ) /\ ( x e. ZZ /\ 0 <_ x ) ) ) |
9 |
|
an12 |
|- ( ( x < ( abs ` D ) /\ ( x e. ZZ /\ 0 <_ x ) ) <-> ( x e. ZZ /\ ( x < ( abs ` D ) /\ 0 <_ x ) ) ) |
10 |
|
ancom |
|- ( ( x < ( abs ` D ) /\ 0 <_ x ) <-> ( 0 <_ x /\ x < ( abs ` D ) ) ) |
11 |
10
|
anbi2i |
|- ( ( x e. ZZ /\ ( x < ( abs ` D ) /\ 0 <_ x ) ) <-> ( x e. ZZ /\ ( 0 <_ x /\ x < ( abs ` D ) ) ) ) |
12 |
9 11
|
bitri |
|- ( ( x < ( abs ` D ) /\ ( x e. ZZ /\ 0 <_ x ) ) <-> ( x e. ZZ /\ ( 0 <_ x /\ x < ( abs ` D ) ) ) ) |
13 |
8 12
|
bitri |
|- ( ( x < ( abs ` D ) /\ x e. NN0 ) <-> ( x e. ZZ /\ ( 0 <_ x /\ x < ( abs ` D ) ) ) ) |
14 |
13
|
anbi1i |
|- ( ( ( x < ( abs ` D ) /\ x e. NN0 ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) <-> ( ( x e. ZZ /\ ( 0 <_ x /\ x < ( abs ` D ) ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) |
15 |
|
anass |
|- ( ( ( x e. ZZ /\ ( 0 <_ x /\ x < ( abs ` D ) ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) <-> ( x e. ZZ /\ ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) ) |
16 |
14 15
|
bitri |
|- ( ( ( x < ( abs ` D ) /\ x e. NN0 ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) <-> ( x e. ZZ /\ ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) ) |
17 |
|
oveq2 |
|- ( r = x -> ( ( q x. D ) + r ) = ( ( q x. D ) + x ) ) |
18 |
17
|
eqeq2d |
|- ( r = x -> ( N = ( ( q x. D ) + r ) <-> N = ( ( q x. D ) + x ) ) ) |
19 |
18
|
rexbidv |
|- ( r = x -> ( E. q e. ZZ N = ( ( q x. D ) + r ) <-> E. q e. ZZ N = ( ( q x. D ) + x ) ) ) |
20 |
1 2 3 4
|
divalglem4 |
|- S = { r e. NN0 | E. q e. ZZ N = ( ( q x. D ) + r ) } |
21 |
19 20
|
elrab2 |
|- ( x e. S <-> ( x e. NN0 /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) |
22 |
21
|
anbi2i |
|- ( ( x < ( abs ` D ) /\ x e. S ) <-> ( x < ( abs ` D ) /\ ( x e. NN0 /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) ) |
23 |
|
ancom |
|- ( ( x e. S /\ x < ( abs ` D ) ) <-> ( x < ( abs ` D ) /\ x e. S ) ) |
24 |
|
anass |
|- ( ( ( x < ( abs ` D ) /\ x e. NN0 ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) <-> ( x < ( abs ` D ) /\ ( x e. NN0 /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) ) |
25 |
22 23 24
|
3bitr4i |
|- ( ( x e. S /\ x < ( abs ` D ) ) <-> ( ( x < ( abs ` D ) /\ x e. NN0 ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) |
26 |
|
df-3an |
|- ( ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ N = ( ( q x. D ) + x ) ) ) |
27 |
26
|
rexbii |
|- ( E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> E. q e. ZZ ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ N = ( ( q x. D ) + x ) ) ) |
28 |
|
r19.42v |
|- ( E. q e. ZZ ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ N = ( ( q x. D ) + x ) ) <-> ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) |
29 |
27 28
|
bitri |
|- ( E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) |
30 |
29
|
anbi2i |
|- ( ( x e. ZZ /\ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) ) <-> ( x e. ZZ /\ ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) ) |
31 |
16 25 30
|
3bitr4i |
|- ( ( x e. S /\ x < ( abs ` D ) ) <-> ( x e. ZZ /\ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) ) ) |
32 |
31
|
eubii |
|- ( E! x ( x e. S /\ x < ( abs ` D ) ) <-> E! x ( x e. ZZ /\ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) ) ) |
33 |
|
df-reu |
|- ( E! x e. S x < ( abs ` D ) <-> E! x ( x e. S /\ x < ( abs ` D ) ) ) |
34 |
|
df-reu |
|- ( E! x e. ZZ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> E! x ( x e. ZZ /\ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) ) ) |
35 |
32 33 34
|
3bitr4i |
|- ( E! x e. S x < ( abs ` D ) <-> E! x e. ZZ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) ) |
36 |
6 35
|
mpbi |
|- E! x e. ZZ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) |
37 |
|
breq2 |
|- ( x = r -> ( 0 <_ x <-> 0 <_ r ) ) |
38 |
|
breq1 |
|- ( x = r -> ( x < ( abs ` D ) <-> r < ( abs ` D ) ) ) |
39 |
|
oveq2 |
|- ( x = r -> ( ( q x. D ) + x ) = ( ( q x. D ) + r ) ) |
40 |
39
|
eqeq2d |
|- ( x = r -> ( N = ( ( q x. D ) + x ) <-> N = ( ( q x. D ) + r ) ) ) |
41 |
37 38 40
|
3anbi123d |
|- ( x = r -> ( ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) ) ) |
42 |
41
|
rexbidv |
|- ( x = r -> ( E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) ) ) |
43 |
42
|
cbvreuvw |
|- ( E! x e. ZZ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) ) |
44 |
36 43
|
mpbi |
|- E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) |