| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divalglem8.1 |  |-  N e. ZZ | 
						
							| 2 |  | divalglem8.2 |  |-  D e. ZZ | 
						
							| 3 |  | divalglem8.3 |  |-  D =/= 0 | 
						
							| 4 |  | divalglem8.4 |  |-  S = { r e. NN0 | D || ( N - r ) } | 
						
							| 5 |  | eqid |  |-  inf ( S , RR , < ) = inf ( S , RR , < ) | 
						
							| 6 | 1 2 3 4 5 | divalglem9 |  |-  E! x e. S x < ( abs ` D ) | 
						
							| 7 |  | elnn0z |  |-  ( x e. NN0 <-> ( x e. ZZ /\ 0 <_ x ) ) | 
						
							| 8 | 7 | anbi2i |  |-  ( ( x < ( abs ` D ) /\ x e. NN0 ) <-> ( x < ( abs ` D ) /\ ( x e. ZZ /\ 0 <_ x ) ) ) | 
						
							| 9 |  | an12 |  |-  ( ( x < ( abs ` D ) /\ ( x e. ZZ /\ 0 <_ x ) ) <-> ( x e. ZZ /\ ( x < ( abs ` D ) /\ 0 <_ x ) ) ) | 
						
							| 10 |  | ancom |  |-  ( ( x < ( abs ` D ) /\ 0 <_ x ) <-> ( 0 <_ x /\ x < ( abs ` D ) ) ) | 
						
							| 11 | 10 | anbi2i |  |-  ( ( x e. ZZ /\ ( x < ( abs ` D ) /\ 0 <_ x ) ) <-> ( x e. ZZ /\ ( 0 <_ x /\ x < ( abs ` D ) ) ) ) | 
						
							| 12 | 9 11 | bitri |  |-  ( ( x < ( abs ` D ) /\ ( x e. ZZ /\ 0 <_ x ) ) <-> ( x e. ZZ /\ ( 0 <_ x /\ x < ( abs ` D ) ) ) ) | 
						
							| 13 | 8 12 | bitri |  |-  ( ( x < ( abs ` D ) /\ x e. NN0 ) <-> ( x e. ZZ /\ ( 0 <_ x /\ x < ( abs ` D ) ) ) ) | 
						
							| 14 | 13 | anbi1i |  |-  ( ( ( x < ( abs ` D ) /\ x e. NN0 ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) <-> ( ( x e. ZZ /\ ( 0 <_ x /\ x < ( abs ` D ) ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) | 
						
							| 15 |  | anass |  |-  ( ( ( x e. ZZ /\ ( 0 <_ x /\ x < ( abs ` D ) ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) <-> ( x e. ZZ /\ ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) ) | 
						
							| 16 | 14 15 | bitri |  |-  ( ( ( x < ( abs ` D ) /\ x e. NN0 ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) <-> ( x e. ZZ /\ ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) ) | 
						
							| 17 |  | oveq2 |  |-  ( r = x -> ( ( q x. D ) + r ) = ( ( q x. D ) + x ) ) | 
						
							| 18 | 17 | eqeq2d |  |-  ( r = x -> ( N = ( ( q x. D ) + r ) <-> N = ( ( q x. D ) + x ) ) ) | 
						
							| 19 | 18 | rexbidv |  |-  ( r = x -> ( E. q e. ZZ N = ( ( q x. D ) + r ) <-> E. q e. ZZ N = ( ( q x. D ) + x ) ) ) | 
						
							| 20 | 1 2 3 4 | divalglem4 |  |-  S = { r e. NN0 | E. q e. ZZ N = ( ( q x. D ) + r ) } | 
						
							| 21 | 19 20 | elrab2 |  |-  ( x e. S <-> ( x e. NN0 /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) | 
						
							| 22 | 21 | anbi2i |  |-  ( ( x < ( abs ` D ) /\ x e. S ) <-> ( x < ( abs ` D ) /\ ( x e. NN0 /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) ) | 
						
							| 23 |  | ancom |  |-  ( ( x e. S /\ x < ( abs ` D ) ) <-> ( x < ( abs ` D ) /\ x e. S ) ) | 
						
							| 24 |  | anass |  |-  ( ( ( x < ( abs ` D ) /\ x e. NN0 ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) <-> ( x < ( abs ` D ) /\ ( x e. NN0 /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) ) | 
						
							| 25 | 22 23 24 | 3bitr4i |  |-  ( ( x e. S /\ x < ( abs ` D ) ) <-> ( ( x < ( abs ` D ) /\ x e. NN0 ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) | 
						
							| 26 |  | df-3an |  |-  ( ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ N = ( ( q x. D ) + x ) ) ) | 
						
							| 27 | 26 | rexbii |  |-  ( E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> E. q e. ZZ ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ N = ( ( q x. D ) + x ) ) ) | 
						
							| 28 |  | r19.42v |  |-  ( E. q e. ZZ ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ N = ( ( q x. D ) + x ) ) <-> ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) | 
						
							| 29 | 27 28 | bitri |  |-  ( E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) | 
						
							| 30 | 29 | anbi2i |  |-  ( ( x e. ZZ /\ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) ) <-> ( x e. ZZ /\ ( ( 0 <_ x /\ x < ( abs ` D ) ) /\ E. q e. ZZ N = ( ( q x. D ) + x ) ) ) ) | 
						
							| 31 | 16 25 30 | 3bitr4i |  |-  ( ( x e. S /\ x < ( abs ` D ) ) <-> ( x e. ZZ /\ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) ) ) | 
						
							| 32 | 31 | eubii |  |-  ( E! x ( x e. S /\ x < ( abs ` D ) ) <-> E! x ( x e. ZZ /\ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) ) ) | 
						
							| 33 |  | df-reu |  |-  ( E! x e. S x < ( abs ` D ) <-> E! x ( x e. S /\ x < ( abs ` D ) ) ) | 
						
							| 34 |  | df-reu |  |-  ( E! x e. ZZ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> E! x ( x e. ZZ /\ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) ) ) | 
						
							| 35 | 32 33 34 | 3bitr4i |  |-  ( E! x e. S x < ( abs ` D ) <-> E! x e. ZZ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) ) | 
						
							| 36 | 6 35 | mpbi |  |-  E! x e. ZZ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) | 
						
							| 37 |  | breq2 |  |-  ( x = r -> ( 0 <_ x <-> 0 <_ r ) ) | 
						
							| 38 |  | breq1 |  |-  ( x = r -> ( x < ( abs ` D ) <-> r < ( abs ` D ) ) ) | 
						
							| 39 |  | oveq2 |  |-  ( x = r -> ( ( q x. D ) + x ) = ( ( q x. D ) + r ) ) | 
						
							| 40 | 39 | eqeq2d |  |-  ( x = r -> ( N = ( ( q x. D ) + x ) <-> N = ( ( q x. D ) + r ) ) ) | 
						
							| 41 | 37 38 40 | 3anbi123d |  |-  ( x = r -> ( ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) ) ) | 
						
							| 42 | 41 | rexbidv |  |-  ( x = r -> ( E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) ) ) | 
						
							| 43 | 42 | cbvreuvw |  |-  ( E! x e. ZZ E. q e. ZZ ( 0 <_ x /\ x < ( abs ` D ) /\ N = ( ( q x. D ) + x ) ) <-> E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) ) | 
						
							| 44 | 36 43 | mpbi |  |-  E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) |