| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divalglem0.1 |  |-  N e. ZZ | 
						
							| 2 |  | divalglem0.2 |  |-  D e. ZZ | 
						
							| 3 |  | divalglem1.3 |  |-  D =/= 0 | 
						
							| 4 |  | divalglem2.4 |  |-  S = { r e. NN0 | D || ( N - r ) } | 
						
							| 5 |  | nn0z |  |-  ( z e. NN0 -> z e. ZZ ) | 
						
							| 6 |  | zsubcl |  |-  ( ( N e. ZZ /\ z e. ZZ ) -> ( N - z ) e. ZZ ) | 
						
							| 7 | 1 5 6 | sylancr |  |-  ( z e. NN0 -> ( N - z ) e. ZZ ) | 
						
							| 8 |  | divides |  |-  ( ( D e. ZZ /\ ( N - z ) e. ZZ ) -> ( D || ( N - z ) <-> E. q e. ZZ ( q x. D ) = ( N - z ) ) ) | 
						
							| 9 | 2 7 8 | sylancr |  |-  ( z e. NN0 -> ( D || ( N - z ) <-> E. q e. ZZ ( q x. D ) = ( N - z ) ) ) | 
						
							| 10 |  | nn0cn |  |-  ( z e. NN0 -> z e. CC ) | 
						
							| 11 |  | zmulcl |  |-  ( ( q e. ZZ /\ D e. ZZ ) -> ( q x. D ) e. ZZ ) | 
						
							| 12 | 2 11 | mpan2 |  |-  ( q e. ZZ -> ( q x. D ) e. ZZ ) | 
						
							| 13 | 12 | zcnd |  |-  ( q e. ZZ -> ( q x. D ) e. CC ) | 
						
							| 14 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 15 | 1 14 | ax-mp |  |-  N e. CC | 
						
							| 16 |  | subadd |  |-  ( ( N e. CC /\ z e. CC /\ ( q x. D ) e. CC ) -> ( ( N - z ) = ( q x. D ) <-> ( z + ( q x. D ) ) = N ) ) | 
						
							| 17 | 15 16 | mp3an1 |  |-  ( ( z e. CC /\ ( q x. D ) e. CC ) -> ( ( N - z ) = ( q x. D ) <-> ( z + ( q x. D ) ) = N ) ) | 
						
							| 18 |  | addcom |  |-  ( ( z e. CC /\ ( q x. D ) e. CC ) -> ( z + ( q x. D ) ) = ( ( q x. D ) + z ) ) | 
						
							| 19 | 18 | eqeq1d |  |-  ( ( z e. CC /\ ( q x. D ) e. CC ) -> ( ( z + ( q x. D ) ) = N <-> ( ( q x. D ) + z ) = N ) ) | 
						
							| 20 | 17 19 | bitrd |  |-  ( ( z e. CC /\ ( q x. D ) e. CC ) -> ( ( N - z ) = ( q x. D ) <-> ( ( q x. D ) + z ) = N ) ) | 
						
							| 21 | 10 13 20 | syl2an |  |-  ( ( z e. NN0 /\ q e. ZZ ) -> ( ( N - z ) = ( q x. D ) <-> ( ( q x. D ) + z ) = N ) ) | 
						
							| 22 |  | eqcom |  |-  ( ( N - z ) = ( q x. D ) <-> ( q x. D ) = ( N - z ) ) | 
						
							| 23 |  | eqcom |  |-  ( ( ( q x. D ) + z ) = N <-> N = ( ( q x. D ) + z ) ) | 
						
							| 24 | 21 22 23 | 3bitr3g |  |-  ( ( z e. NN0 /\ q e. ZZ ) -> ( ( q x. D ) = ( N - z ) <-> N = ( ( q x. D ) + z ) ) ) | 
						
							| 25 | 24 | rexbidva |  |-  ( z e. NN0 -> ( E. q e. ZZ ( q x. D ) = ( N - z ) <-> E. q e. ZZ N = ( ( q x. D ) + z ) ) ) | 
						
							| 26 | 9 25 | bitrd |  |-  ( z e. NN0 -> ( D || ( N - z ) <-> E. q e. ZZ N = ( ( q x. D ) + z ) ) ) | 
						
							| 27 | 26 | pm5.32i |  |-  ( ( z e. NN0 /\ D || ( N - z ) ) <-> ( z e. NN0 /\ E. q e. ZZ N = ( ( q x. D ) + z ) ) ) | 
						
							| 28 |  | oveq2 |  |-  ( r = z -> ( N - r ) = ( N - z ) ) | 
						
							| 29 | 28 | breq2d |  |-  ( r = z -> ( D || ( N - r ) <-> D || ( N - z ) ) ) | 
						
							| 30 | 29 4 | elrab2 |  |-  ( z e. S <-> ( z e. NN0 /\ D || ( N - z ) ) ) | 
						
							| 31 |  | oveq2 |  |-  ( r = z -> ( ( q x. D ) + r ) = ( ( q x. D ) + z ) ) | 
						
							| 32 | 31 | eqeq2d |  |-  ( r = z -> ( N = ( ( q x. D ) + r ) <-> N = ( ( q x. D ) + z ) ) ) | 
						
							| 33 | 32 | rexbidv |  |-  ( r = z -> ( E. q e. ZZ N = ( ( q x. D ) + r ) <-> E. q e. ZZ N = ( ( q x. D ) + z ) ) ) | 
						
							| 34 | 33 | elrab |  |-  ( z e. { r e. NN0 | E. q e. ZZ N = ( ( q x. D ) + r ) } <-> ( z e. NN0 /\ E. q e. ZZ N = ( ( q x. D ) + z ) ) ) | 
						
							| 35 | 27 30 34 | 3bitr4i |  |-  ( z e. S <-> z e. { r e. NN0 | E. q e. ZZ N = ( ( q x. D ) + r ) } ) | 
						
							| 36 | 35 | eqriv |  |-  S = { r e. NN0 | E. q e. ZZ N = ( ( q x. D ) + r ) } |