Step |
Hyp |
Ref |
Expression |
1 |
|
divalglem0.1 |
|- N e. ZZ |
2 |
|
divalglem0.2 |
|- D e. ZZ |
3 |
|
divalglem1.3 |
|- D =/= 0 |
4 |
|
divalglem2.4 |
|- S = { r e. NN0 | D || ( N - r ) } |
5 |
|
nn0z |
|- ( z e. NN0 -> z e. ZZ ) |
6 |
|
zsubcl |
|- ( ( N e. ZZ /\ z e. ZZ ) -> ( N - z ) e. ZZ ) |
7 |
1 5 6
|
sylancr |
|- ( z e. NN0 -> ( N - z ) e. ZZ ) |
8 |
|
divides |
|- ( ( D e. ZZ /\ ( N - z ) e. ZZ ) -> ( D || ( N - z ) <-> E. q e. ZZ ( q x. D ) = ( N - z ) ) ) |
9 |
2 7 8
|
sylancr |
|- ( z e. NN0 -> ( D || ( N - z ) <-> E. q e. ZZ ( q x. D ) = ( N - z ) ) ) |
10 |
|
nn0cn |
|- ( z e. NN0 -> z e. CC ) |
11 |
|
zmulcl |
|- ( ( q e. ZZ /\ D e. ZZ ) -> ( q x. D ) e. ZZ ) |
12 |
2 11
|
mpan2 |
|- ( q e. ZZ -> ( q x. D ) e. ZZ ) |
13 |
12
|
zcnd |
|- ( q e. ZZ -> ( q x. D ) e. CC ) |
14 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
15 |
1 14
|
ax-mp |
|- N e. CC |
16 |
|
subadd |
|- ( ( N e. CC /\ z e. CC /\ ( q x. D ) e. CC ) -> ( ( N - z ) = ( q x. D ) <-> ( z + ( q x. D ) ) = N ) ) |
17 |
15 16
|
mp3an1 |
|- ( ( z e. CC /\ ( q x. D ) e. CC ) -> ( ( N - z ) = ( q x. D ) <-> ( z + ( q x. D ) ) = N ) ) |
18 |
|
addcom |
|- ( ( z e. CC /\ ( q x. D ) e. CC ) -> ( z + ( q x. D ) ) = ( ( q x. D ) + z ) ) |
19 |
18
|
eqeq1d |
|- ( ( z e. CC /\ ( q x. D ) e. CC ) -> ( ( z + ( q x. D ) ) = N <-> ( ( q x. D ) + z ) = N ) ) |
20 |
17 19
|
bitrd |
|- ( ( z e. CC /\ ( q x. D ) e. CC ) -> ( ( N - z ) = ( q x. D ) <-> ( ( q x. D ) + z ) = N ) ) |
21 |
10 13 20
|
syl2an |
|- ( ( z e. NN0 /\ q e. ZZ ) -> ( ( N - z ) = ( q x. D ) <-> ( ( q x. D ) + z ) = N ) ) |
22 |
|
eqcom |
|- ( ( N - z ) = ( q x. D ) <-> ( q x. D ) = ( N - z ) ) |
23 |
|
eqcom |
|- ( ( ( q x. D ) + z ) = N <-> N = ( ( q x. D ) + z ) ) |
24 |
21 22 23
|
3bitr3g |
|- ( ( z e. NN0 /\ q e. ZZ ) -> ( ( q x. D ) = ( N - z ) <-> N = ( ( q x. D ) + z ) ) ) |
25 |
24
|
rexbidva |
|- ( z e. NN0 -> ( E. q e. ZZ ( q x. D ) = ( N - z ) <-> E. q e. ZZ N = ( ( q x. D ) + z ) ) ) |
26 |
9 25
|
bitrd |
|- ( z e. NN0 -> ( D || ( N - z ) <-> E. q e. ZZ N = ( ( q x. D ) + z ) ) ) |
27 |
26
|
pm5.32i |
|- ( ( z e. NN0 /\ D || ( N - z ) ) <-> ( z e. NN0 /\ E. q e. ZZ N = ( ( q x. D ) + z ) ) ) |
28 |
|
oveq2 |
|- ( r = z -> ( N - r ) = ( N - z ) ) |
29 |
28
|
breq2d |
|- ( r = z -> ( D || ( N - r ) <-> D || ( N - z ) ) ) |
30 |
29 4
|
elrab2 |
|- ( z e. S <-> ( z e. NN0 /\ D || ( N - z ) ) ) |
31 |
|
oveq2 |
|- ( r = z -> ( ( q x. D ) + r ) = ( ( q x. D ) + z ) ) |
32 |
31
|
eqeq2d |
|- ( r = z -> ( N = ( ( q x. D ) + r ) <-> N = ( ( q x. D ) + z ) ) ) |
33 |
32
|
rexbidv |
|- ( r = z -> ( E. q e. ZZ N = ( ( q x. D ) + r ) <-> E. q e. ZZ N = ( ( q x. D ) + z ) ) ) |
34 |
33
|
elrab |
|- ( z e. { r e. NN0 | E. q e. ZZ N = ( ( q x. D ) + r ) } <-> ( z e. NN0 /\ E. q e. ZZ N = ( ( q x. D ) + z ) ) ) |
35 |
27 30 34
|
3bitr4i |
|- ( z e. S <-> z e. { r e. NN0 | E. q e. ZZ N = ( ( q x. D ) + r ) } ) |
36 |
35
|
eqriv |
|- S = { r e. NN0 | E. q e. ZZ N = ( ( q x. D ) + r ) } |