Step |
Hyp |
Ref |
Expression |
1 |
|
divalglem0.1 |
|- N e. ZZ |
2 |
|
divalglem0.2 |
|- D e. ZZ |
3 |
|
divalglem1.3 |
|- D =/= 0 |
4 |
|
divalglem2.4 |
|- S = { r e. NN0 | D || ( N - r ) } |
5 |
|
divalglem5.5 |
|- R = inf ( S , RR , < ) |
6 |
1 2 3 4
|
divalglem2 |
|- inf ( S , RR , < ) e. S |
7 |
5 6
|
eqeltri |
|- R e. S |
8 |
|
oveq2 |
|- ( x = R -> ( N - x ) = ( N - R ) ) |
9 |
8
|
breq2d |
|- ( x = R -> ( D || ( N - x ) <-> D || ( N - R ) ) ) |
10 |
|
oveq2 |
|- ( r = x -> ( N - r ) = ( N - x ) ) |
11 |
10
|
breq2d |
|- ( r = x -> ( D || ( N - r ) <-> D || ( N - x ) ) ) |
12 |
11
|
cbvrabv |
|- { r e. NN0 | D || ( N - r ) } = { x e. NN0 | D || ( N - x ) } |
13 |
4 12
|
eqtri |
|- S = { x e. NN0 | D || ( N - x ) } |
14 |
9 13
|
elrab2 |
|- ( R e. S <-> ( R e. NN0 /\ D || ( N - R ) ) ) |
15 |
7 14
|
mpbi |
|- ( R e. NN0 /\ D || ( N - R ) ) |
16 |
15
|
simpli |
|- R e. NN0 |
17 |
16
|
nn0ge0i |
|- 0 <_ R |
18 |
|
nnabscl |
|- ( ( D e. ZZ /\ D =/= 0 ) -> ( abs ` D ) e. NN ) |
19 |
2 3 18
|
mp2an |
|- ( abs ` D ) e. NN |
20 |
19
|
nngt0i |
|- 0 < ( abs ` D ) |
21 |
|
0re |
|- 0 e. RR |
22 |
|
zcn |
|- ( D e. ZZ -> D e. CC ) |
23 |
2 22
|
ax-mp |
|- D e. CC |
24 |
23
|
abscli |
|- ( abs ` D ) e. RR |
25 |
21 24
|
ltnlei |
|- ( 0 < ( abs ` D ) <-> -. ( abs ` D ) <_ 0 ) |
26 |
20 25
|
mpbi |
|- -. ( abs ` D ) <_ 0 |
27 |
4
|
ssrab3 |
|- S C_ NN0 |
28 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
29 |
27 28
|
sseqtri |
|- S C_ ( ZZ>= ` 0 ) |
30 |
|
nn0abscl |
|- ( D e. ZZ -> ( abs ` D ) e. NN0 ) |
31 |
2 30
|
ax-mp |
|- ( abs ` D ) e. NN0 |
32 |
|
nn0sub2 |
|- ( ( ( abs ` D ) e. NN0 /\ R e. NN0 /\ ( abs ` D ) <_ R ) -> ( R - ( abs ` D ) ) e. NN0 ) |
33 |
31 16 32
|
mp3an12 |
|- ( ( abs ` D ) <_ R -> ( R - ( abs ` D ) ) e. NN0 ) |
34 |
15
|
a1i |
|- ( ( abs ` D ) <_ R -> ( R e. NN0 /\ D || ( N - R ) ) ) |
35 |
|
nn0z |
|- ( R e. NN0 -> R e. ZZ ) |
36 |
|
1z |
|- 1 e. ZZ |
37 |
1 2
|
divalglem0 |
|- ( ( R e. ZZ /\ 1 e. ZZ ) -> ( D || ( N - R ) -> D || ( N - ( R - ( 1 x. ( abs ` D ) ) ) ) ) ) |
38 |
36 37
|
mpan2 |
|- ( R e. ZZ -> ( D || ( N - R ) -> D || ( N - ( R - ( 1 x. ( abs ` D ) ) ) ) ) ) |
39 |
24
|
recni |
|- ( abs ` D ) e. CC |
40 |
39
|
mulid2i |
|- ( 1 x. ( abs ` D ) ) = ( abs ` D ) |
41 |
40
|
oveq2i |
|- ( R - ( 1 x. ( abs ` D ) ) ) = ( R - ( abs ` D ) ) |
42 |
41
|
oveq2i |
|- ( N - ( R - ( 1 x. ( abs ` D ) ) ) ) = ( N - ( R - ( abs ` D ) ) ) |
43 |
42
|
breq2i |
|- ( D || ( N - ( R - ( 1 x. ( abs ` D ) ) ) ) <-> D || ( N - ( R - ( abs ` D ) ) ) ) |
44 |
38 43
|
syl6ib |
|- ( R e. ZZ -> ( D || ( N - R ) -> D || ( N - ( R - ( abs ` D ) ) ) ) ) |
45 |
35 44
|
syl |
|- ( R e. NN0 -> ( D || ( N - R ) -> D || ( N - ( R - ( abs ` D ) ) ) ) ) |
46 |
45
|
imp |
|- ( ( R e. NN0 /\ D || ( N - R ) ) -> D || ( N - ( R - ( abs ` D ) ) ) ) |
47 |
34 46
|
syl |
|- ( ( abs ` D ) <_ R -> D || ( N - ( R - ( abs ` D ) ) ) ) |
48 |
|
oveq2 |
|- ( x = ( R - ( abs ` D ) ) -> ( N - x ) = ( N - ( R - ( abs ` D ) ) ) ) |
49 |
48
|
breq2d |
|- ( x = ( R - ( abs ` D ) ) -> ( D || ( N - x ) <-> D || ( N - ( R - ( abs ` D ) ) ) ) ) |
50 |
49 13
|
elrab2 |
|- ( ( R - ( abs ` D ) ) e. S <-> ( ( R - ( abs ` D ) ) e. NN0 /\ D || ( N - ( R - ( abs ` D ) ) ) ) ) |
51 |
33 47 50
|
sylanbrc |
|- ( ( abs ` D ) <_ R -> ( R - ( abs ` D ) ) e. S ) |
52 |
|
infssuzle |
|- ( ( S C_ ( ZZ>= ` 0 ) /\ ( R - ( abs ` D ) ) e. S ) -> inf ( S , RR , < ) <_ ( R - ( abs ` D ) ) ) |
53 |
29 51 52
|
sylancr |
|- ( ( abs ` D ) <_ R -> inf ( S , RR , < ) <_ ( R - ( abs ` D ) ) ) |
54 |
5 53
|
eqbrtrid |
|- ( ( abs ` D ) <_ R -> R <_ ( R - ( abs ` D ) ) ) |
55 |
34
|
simpld |
|- ( ( abs ` D ) <_ R -> R e. NN0 ) |
56 |
55
|
nn0red |
|- ( ( abs ` D ) <_ R -> R e. RR ) |
57 |
|
lesub |
|- ( ( R e. RR /\ R e. RR /\ ( abs ` D ) e. RR ) -> ( R <_ ( R - ( abs ` D ) ) <-> ( abs ` D ) <_ ( R - R ) ) ) |
58 |
24 57
|
mp3an3 |
|- ( ( R e. RR /\ R e. RR ) -> ( R <_ ( R - ( abs ` D ) ) <-> ( abs ` D ) <_ ( R - R ) ) ) |
59 |
56 56 58
|
syl2anc |
|- ( ( abs ` D ) <_ R -> ( R <_ ( R - ( abs ` D ) ) <-> ( abs ` D ) <_ ( R - R ) ) ) |
60 |
56
|
recnd |
|- ( ( abs ` D ) <_ R -> R e. CC ) |
61 |
60
|
subidd |
|- ( ( abs ` D ) <_ R -> ( R - R ) = 0 ) |
62 |
61
|
breq2d |
|- ( ( abs ` D ) <_ R -> ( ( abs ` D ) <_ ( R - R ) <-> ( abs ` D ) <_ 0 ) ) |
63 |
59 62
|
bitrd |
|- ( ( abs ` D ) <_ R -> ( R <_ ( R - ( abs ` D ) ) <-> ( abs ` D ) <_ 0 ) ) |
64 |
54 63
|
mpbid |
|- ( ( abs ` D ) <_ R -> ( abs ` D ) <_ 0 ) |
65 |
26 64
|
mto |
|- -. ( abs ` D ) <_ R |
66 |
16
|
nn0rei |
|- R e. RR |
67 |
66 24
|
ltnlei |
|- ( R < ( abs ` D ) <-> -. ( abs ` D ) <_ R ) |
68 |
65 67
|
mpbir |
|- R < ( abs ` D ) |
69 |
17 68
|
pm3.2i |
|- ( 0 <_ R /\ R < ( abs ` D ) ) |