Step |
Hyp |
Ref |
Expression |
1 |
|
divalglem6.1 |
|- A e. NN |
2 |
|
divalglem6.2 |
|- X e. ( 0 ... ( A - 1 ) ) |
3 |
|
divalglem6.3 |
|- K e. ZZ |
4 |
3
|
zrei |
|- K e. RR |
5 |
|
0re |
|- 0 e. RR |
6 |
4 5
|
lttri2i |
|- ( K =/= 0 <-> ( K < 0 \/ 0 < K ) ) |
7 |
|
0z |
|- 0 e. ZZ |
8 |
1
|
nnzi |
|- A e. ZZ |
9 |
|
elfzm11 |
|- ( ( 0 e. ZZ /\ A e. ZZ ) -> ( X e. ( 0 ... ( A - 1 ) ) <-> ( X e. ZZ /\ 0 <_ X /\ X < A ) ) ) |
10 |
7 8 9
|
mp2an |
|- ( X e. ( 0 ... ( A - 1 ) ) <-> ( X e. ZZ /\ 0 <_ X /\ X < A ) ) |
11 |
2 10
|
mpbi |
|- ( X e. ZZ /\ 0 <_ X /\ X < A ) |
12 |
11
|
simp3i |
|- X < A |
13 |
11
|
simp1i |
|- X e. ZZ |
14 |
13
|
zrei |
|- X e. RR |
15 |
1
|
nnrei |
|- A e. RR |
16 |
4 15
|
remulcli |
|- ( K x. A ) e. RR |
17 |
14 15 16
|
ltadd1i |
|- ( X < A <-> ( X + ( K x. A ) ) < ( A + ( K x. A ) ) ) |
18 |
12 17
|
mpbi |
|- ( X + ( K x. A ) ) < ( A + ( K x. A ) ) |
19 |
4
|
renegcli |
|- -u K e. RR |
20 |
1
|
nnnn0i |
|- A e. NN0 |
21 |
20
|
nn0ge0i |
|- 0 <_ A |
22 |
|
lemulge12 |
|- ( ( ( A e. RR /\ -u K e. RR ) /\ ( 0 <_ A /\ 1 <_ -u K ) ) -> A <_ ( -u K x. A ) ) |
23 |
22
|
an4s |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( -u K e. RR /\ 1 <_ -u K ) ) -> A <_ ( -u K x. A ) ) |
24 |
15 21 23
|
mpanl12 |
|- ( ( -u K e. RR /\ 1 <_ -u K ) -> A <_ ( -u K x. A ) ) |
25 |
19 24
|
mpan |
|- ( 1 <_ -u K -> A <_ ( -u K x. A ) ) |
26 |
|
lt0neg1 |
|- ( K e. RR -> ( K < 0 <-> 0 < -u K ) ) |
27 |
4 26
|
ax-mp |
|- ( K < 0 <-> 0 < -u K ) |
28 |
|
znegcl |
|- ( K e. ZZ -> -u K e. ZZ ) |
29 |
3 28
|
ax-mp |
|- -u K e. ZZ |
30 |
|
zltp1le |
|- ( ( 0 e. ZZ /\ -u K e. ZZ ) -> ( 0 < -u K <-> ( 0 + 1 ) <_ -u K ) ) |
31 |
7 29 30
|
mp2an |
|- ( 0 < -u K <-> ( 0 + 1 ) <_ -u K ) |
32 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
33 |
32
|
breq1i |
|- ( ( 0 + 1 ) <_ -u K <-> 1 <_ -u K ) |
34 |
31 33
|
bitri |
|- ( 0 < -u K <-> 1 <_ -u K ) |
35 |
27 34
|
bitri |
|- ( K < 0 <-> 1 <_ -u K ) |
36 |
4
|
recni |
|- K e. CC |
37 |
15
|
recni |
|- A e. CC |
38 |
36 37
|
mulneg1i |
|- ( -u K x. A ) = -u ( K x. A ) |
39 |
38
|
oveq2i |
|- ( A - ( -u K x. A ) ) = ( A - -u ( K x. A ) ) |
40 |
16
|
recni |
|- ( K x. A ) e. CC |
41 |
37 40
|
subnegi |
|- ( A - -u ( K x. A ) ) = ( A + ( K x. A ) ) |
42 |
39 41
|
eqtri |
|- ( A - ( -u K x. A ) ) = ( A + ( K x. A ) ) |
43 |
42
|
breq1i |
|- ( ( A - ( -u K x. A ) ) <_ 0 <-> ( A + ( K x. A ) ) <_ 0 ) |
44 |
19 15
|
remulcli |
|- ( -u K x. A ) e. RR |
45 |
|
suble0 |
|- ( ( A e. RR /\ ( -u K x. A ) e. RR ) -> ( ( A - ( -u K x. A ) ) <_ 0 <-> A <_ ( -u K x. A ) ) ) |
46 |
15 44 45
|
mp2an |
|- ( ( A - ( -u K x. A ) ) <_ 0 <-> A <_ ( -u K x. A ) ) |
47 |
43 46
|
bitr3i |
|- ( ( A + ( K x. A ) ) <_ 0 <-> A <_ ( -u K x. A ) ) |
48 |
25 35 47
|
3imtr4i |
|- ( K < 0 -> ( A + ( K x. A ) ) <_ 0 ) |
49 |
14 16
|
readdcli |
|- ( X + ( K x. A ) ) e. RR |
50 |
15 16
|
readdcli |
|- ( A + ( K x. A ) ) e. RR |
51 |
49 50 5
|
ltletri |
|- ( ( ( X + ( K x. A ) ) < ( A + ( K x. A ) ) /\ ( A + ( K x. A ) ) <_ 0 ) -> ( X + ( K x. A ) ) < 0 ) |
52 |
18 48 51
|
sylancr |
|- ( K < 0 -> ( X + ( K x. A ) ) < 0 ) |
53 |
49 5
|
ltnlei |
|- ( ( X + ( K x. A ) ) < 0 <-> -. 0 <_ ( X + ( K x. A ) ) ) |
54 |
52 53
|
sylib |
|- ( K < 0 -> -. 0 <_ ( X + ( K x. A ) ) ) |
55 |
|
elfzle1 |
|- ( ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) -> 0 <_ ( X + ( K x. A ) ) ) |
56 |
54 55
|
nsyl |
|- ( K < 0 -> -. ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) ) |
57 |
|
zltp1le |
|- ( ( 0 e. ZZ /\ K e. ZZ ) -> ( 0 < K <-> ( 0 + 1 ) <_ K ) ) |
58 |
7 3 57
|
mp2an |
|- ( 0 < K <-> ( 0 + 1 ) <_ K ) |
59 |
32
|
breq1i |
|- ( ( 0 + 1 ) <_ K <-> 1 <_ K ) |
60 |
58 59
|
bitri |
|- ( 0 < K <-> 1 <_ K ) |
61 |
|
lemulge12 |
|- ( ( ( A e. RR /\ K e. RR ) /\ ( 0 <_ A /\ 1 <_ K ) ) -> A <_ ( K x. A ) ) |
62 |
15 4 61
|
mpanl12 |
|- ( ( 0 <_ A /\ 1 <_ K ) -> A <_ ( K x. A ) ) |
63 |
21 62
|
mpan |
|- ( 1 <_ K -> A <_ ( K x. A ) ) |
64 |
60 63
|
sylbi |
|- ( 0 < K -> A <_ ( K x. A ) ) |
65 |
11
|
simp2i |
|- 0 <_ X |
66 |
|
addge02 |
|- ( ( ( K x. A ) e. RR /\ X e. RR ) -> ( 0 <_ X <-> ( K x. A ) <_ ( X + ( K x. A ) ) ) ) |
67 |
16 14 66
|
mp2an |
|- ( 0 <_ X <-> ( K x. A ) <_ ( X + ( K x. A ) ) ) |
68 |
65 67
|
mpbi |
|- ( K x. A ) <_ ( X + ( K x. A ) ) |
69 |
15 16 49
|
letri |
|- ( ( A <_ ( K x. A ) /\ ( K x. A ) <_ ( X + ( K x. A ) ) ) -> A <_ ( X + ( K x. A ) ) ) |
70 |
64 68 69
|
sylancl |
|- ( 0 < K -> A <_ ( X + ( K x. A ) ) ) |
71 |
15 49
|
lenlti |
|- ( A <_ ( X + ( K x. A ) ) <-> -. ( X + ( K x. A ) ) < A ) |
72 |
70 71
|
sylib |
|- ( 0 < K -> -. ( X + ( K x. A ) ) < A ) |
73 |
|
elfzm11 |
|- ( ( 0 e. ZZ /\ A e. ZZ ) -> ( ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) <-> ( ( X + ( K x. A ) ) e. ZZ /\ 0 <_ ( X + ( K x. A ) ) /\ ( X + ( K x. A ) ) < A ) ) ) |
74 |
7 8 73
|
mp2an |
|- ( ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) <-> ( ( X + ( K x. A ) ) e. ZZ /\ 0 <_ ( X + ( K x. A ) ) /\ ( X + ( K x. A ) ) < A ) ) |
75 |
74
|
simp3bi |
|- ( ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) -> ( X + ( K x. A ) ) < A ) |
76 |
72 75
|
nsyl |
|- ( 0 < K -> -. ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) ) |
77 |
56 76
|
jaoi |
|- ( ( K < 0 \/ 0 < K ) -> -. ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) ) |
78 |
6 77
|
sylbi |
|- ( K =/= 0 -> -. ( X + ( K x. A ) ) e. ( 0 ... ( A - 1 ) ) ) |