Step |
Hyp |
Ref |
Expression |
1 |
|
divalglem7.1 |
|- D e. ZZ |
2 |
|
divalglem7.2 |
|- D =/= 0 |
3 |
|
oveq1 |
|- ( X = if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) -> ( X + ( K x. ( abs ` D ) ) ) = ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) ) |
4 |
3
|
eleq1d |
|- ( X = if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) -> ( ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
5 |
4
|
notbid |
|- ( X = if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) -> ( -. ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
6 |
5
|
imbi2d |
|- ( X = if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) -> ( ( K =/= 0 -> -. ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) <-> ( K =/= 0 -> -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) ) |
7 |
|
neeq1 |
|- ( K = if ( K e. ZZ , K , 0 ) -> ( K =/= 0 <-> if ( K e. ZZ , K , 0 ) =/= 0 ) ) |
8 |
|
oveq1 |
|- ( K = if ( K e. ZZ , K , 0 ) -> ( K x. ( abs ` D ) ) = ( if ( K e. ZZ , K , 0 ) x. ( abs ` D ) ) ) |
9 |
8
|
oveq2d |
|- ( K = if ( K e. ZZ , K , 0 ) -> ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) = ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( if ( K e. ZZ , K , 0 ) x. ( abs ` D ) ) ) ) |
10 |
9
|
eleq1d |
|- ( K = if ( K e. ZZ , K , 0 ) -> ( ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( if ( K e. ZZ , K , 0 ) x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
11 |
10
|
notbid |
|- ( K = if ( K e. ZZ , K , 0 ) -> ( -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( if ( K e. ZZ , K , 0 ) x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
12 |
7 11
|
imbi12d |
|- ( K = if ( K e. ZZ , K , 0 ) -> ( ( K =/= 0 -> -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) <-> ( if ( K e. ZZ , K , 0 ) =/= 0 -> -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( if ( K e. ZZ , K , 0 ) x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) ) |
13 |
|
nnabscl |
|- ( ( D e. ZZ /\ D =/= 0 ) -> ( abs ` D ) e. NN ) |
14 |
1 2 13
|
mp2an |
|- ( abs ` D ) e. NN |
15 |
|
0z |
|- 0 e. ZZ |
16 |
|
0le0 |
|- 0 <_ 0 |
17 |
14
|
nngt0i |
|- 0 < ( abs ` D ) |
18 |
14
|
nnzi |
|- ( abs ` D ) e. ZZ |
19 |
|
elfzm11 |
|- ( ( 0 e. ZZ /\ ( abs ` D ) e. ZZ ) -> ( 0 e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( 0 e. ZZ /\ 0 <_ 0 /\ 0 < ( abs ` D ) ) ) ) |
20 |
15 18 19
|
mp2an |
|- ( 0 e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( 0 e. ZZ /\ 0 <_ 0 /\ 0 < ( abs ` D ) ) ) |
21 |
15 16 17 20
|
mpbir3an |
|- 0 e. ( 0 ... ( ( abs ` D ) - 1 ) ) |
22 |
21
|
elimel |
|- if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) |
23 |
15
|
elimel |
|- if ( K e. ZZ , K , 0 ) e. ZZ |
24 |
14 22 23
|
divalglem6 |
|- ( if ( K e. ZZ , K , 0 ) =/= 0 -> -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( if ( K e. ZZ , K , 0 ) x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) |
25 |
6 12 24
|
dedth2h |
|- ( ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) /\ K e. ZZ ) -> ( K =/= 0 -> -. ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |