| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovex |
|- ( N mod D ) e. _V |
| 2 |
1
|
snid |
|- ( N mod D ) e. { ( N mod D ) } |
| 3 |
|
eleq1 |
|- ( R = ( N mod D ) -> ( R e. { ( N mod D ) } <-> ( N mod D ) e. { ( N mod D ) } ) ) |
| 4 |
2 3
|
mpbiri |
|- ( R = ( N mod D ) -> R e. { ( N mod D ) } ) |
| 5 |
|
elsni |
|- ( R e. { ( N mod D ) } -> R = ( N mod D ) ) |
| 6 |
4 5
|
impbii |
|- ( R = ( N mod D ) <-> R e. { ( N mod D ) } ) |
| 7 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 8 |
|
nnrp |
|- ( D e. NN -> D e. RR+ ) |
| 9 |
|
modlt |
|- ( ( N e. RR /\ D e. RR+ ) -> ( N mod D ) < D ) |
| 10 |
7 8 9
|
syl2an |
|- ( ( N e. ZZ /\ D e. NN ) -> ( N mod D ) < D ) |
| 11 |
|
nnre |
|- ( D e. NN -> D e. RR ) |
| 12 |
|
nnne0 |
|- ( D e. NN -> D =/= 0 ) |
| 13 |
|
redivcl |
|- ( ( N e. RR /\ D e. RR /\ D =/= 0 ) -> ( N / D ) e. RR ) |
| 14 |
7 11 12 13
|
syl3an |
|- ( ( N e. ZZ /\ D e. NN /\ D e. NN ) -> ( N / D ) e. RR ) |
| 15 |
14
|
3anidm23 |
|- ( ( N e. ZZ /\ D e. NN ) -> ( N / D ) e. RR ) |
| 16 |
15
|
flcld |
|- ( ( N e. ZZ /\ D e. NN ) -> ( |_ ` ( N / D ) ) e. ZZ ) |
| 17 |
|
nnz |
|- ( D e. NN -> D e. ZZ ) |
| 18 |
17
|
adantl |
|- ( ( N e. ZZ /\ D e. NN ) -> D e. ZZ ) |
| 19 |
|
zmodcl |
|- ( ( N e. ZZ /\ D e. NN ) -> ( N mod D ) e. NN0 ) |
| 20 |
19
|
nn0zd |
|- ( ( N e. ZZ /\ D e. NN ) -> ( N mod D ) e. ZZ ) |
| 21 |
|
zsubcl |
|- ( ( N e. ZZ /\ ( N mod D ) e. ZZ ) -> ( N - ( N mod D ) ) e. ZZ ) |
| 22 |
20 21
|
syldan |
|- ( ( N e. ZZ /\ D e. NN ) -> ( N - ( N mod D ) ) e. ZZ ) |
| 23 |
|
nncn |
|- ( D e. NN -> D e. CC ) |
| 24 |
23
|
adantl |
|- ( ( N e. ZZ /\ D e. NN ) -> D e. CC ) |
| 25 |
16
|
zcnd |
|- ( ( N e. ZZ /\ D e. NN ) -> ( |_ ` ( N / D ) ) e. CC ) |
| 26 |
24 25
|
mulcomd |
|- ( ( N e. ZZ /\ D e. NN ) -> ( D x. ( |_ ` ( N / D ) ) ) = ( ( |_ ` ( N / D ) ) x. D ) ) |
| 27 |
|
modval |
|- ( ( N e. RR /\ D e. RR+ ) -> ( N mod D ) = ( N - ( D x. ( |_ ` ( N / D ) ) ) ) ) |
| 28 |
7 8 27
|
syl2an |
|- ( ( N e. ZZ /\ D e. NN ) -> ( N mod D ) = ( N - ( D x. ( |_ ` ( N / D ) ) ) ) ) |
| 29 |
19
|
nn0cnd |
|- ( ( N e. ZZ /\ D e. NN ) -> ( N mod D ) e. CC ) |
| 30 |
|
zmulcl |
|- ( ( D e. ZZ /\ ( |_ ` ( N / D ) ) e. ZZ ) -> ( D x. ( |_ ` ( N / D ) ) ) e. ZZ ) |
| 31 |
17 16 30
|
syl2an2 |
|- ( ( N e. ZZ /\ D e. NN ) -> ( D x. ( |_ ` ( N / D ) ) ) e. ZZ ) |
| 32 |
31
|
zcnd |
|- ( ( N e. ZZ /\ D e. NN ) -> ( D x. ( |_ ` ( N / D ) ) ) e. CC ) |
| 33 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 34 |
33
|
adantr |
|- ( ( N e. ZZ /\ D e. NN ) -> N e. CC ) |
| 35 |
29 32 34
|
subexsub |
|- ( ( N e. ZZ /\ D e. NN ) -> ( ( N mod D ) = ( N - ( D x. ( |_ ` ( N / D ) ) ) ) <-> ( D x. ( |_ ` ( N / D ) ) ) = ( N - ( N mod D ) ) ) ) |
| 36 |
28 35
|
mpbid |
|- ( ( N e. ZZ /\ D e. NN ) -> ( D x. ( |_ ` ( N / D ) ) ) = ( N - ( N mod D ) ) ) |
| 37 |
26 36
|
eqtr3d |
|- ( ( N e. ZZ /\ D e. NN ) -> ( ( |_ ` ( N / D ) ) x. D ) = ( N - ( N mod D ) ) ) |
| 38 |
|
dvds0lem |
|- ( ( ( ( |_ ` ( N / D ) ) e. ZZ /\ D e. ZZ /\ ( N - ( N mod D ) ) e. ZZ ) /\ ( ( |_ ` ( N / D ) ) x. D ) = ( N - ( N mod D ) ) ) -> D || ( N - ( N mod D ) ) ) |
| 39 |
16 18 22 37 38
|
syl31anc |
|- ( ( N e. ZZ /\ D e. NN ) -> D || ( N - ( N mod D ) ) ) |
| 40 |
|
divalg2 |
|- ( ( N e. ZZ /\ D e. NN ) -> E! z e. NN0 ( z < D /\ D || ( N - z ) ) ) |
| 41 |
|
breq1 |
|- ( z = ( N mod D ) -> ( z < D <-> ( N mod D ) < D ) ) |
| 42 |
|
oveq2 |
|- ( z = ( N mod D ) -> ( N - z ) = ( N - ( N mod D ) ) ) |
| 43 |
42
|
breq2d |
|- ( z = ( N mod D ) -> ( D || ( N - z ) <-> D || ( N - ( N mod D ) ) ) ) |
| 44 |
41 43
|
anbi12d |
|- ( z = ( N mod D ) -> ( ( z < D /\ D || ( N - z ) ) <-> ( ( N mod D ) < D /\ D || ( N - ( N mod D ) ) ) ) ) |
| 45 |
44
|
riota2 |
|- ( ( ( N mod D ) e. NN0 /\ E! z e. NN0 ( z < D /\ D || ( N - z ) ) ) -> ( ( ( N mod D ) < D /\ D || ( N - ( N mod D ) ) ) <-> ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) = ( N mod D ) ) ) |
| 46 |
19 40 45
|
syl2anc |
|- ( ( N e. ZZ /\ D e. NN ) -> ( ( ( N mod D ) < D /\ D || ( N - ( N mod D ) ) ) <-> ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) = ( N mod D ) ) ) |
| 47 |
10 39 46
|
mpbi2and |
|- ( ( N e. ZZ /\ D e. NN ) -> ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) = ( N mod D ) ) |
| 48 |
47
|
eqcomd |
|- ( ( N e. ZZ /\ D e. NN ) -> ( N mod D ) = ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) ) |
| 49 |
48
|
sneqd |
|- ( ( N e. ZZ /\ D e. NN ) -> { ( N mod D ) } = { ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) } ) |
| 50 |
|
snriota |
|- ( E! z e. NN0 ( z < D /\ D || ( N - z ) ) -> { z e. NN0 | ( z < D /\ D || ( N - z ) ) } = { ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) } ) |
| 51 |
40 50
|
syl |
|- ( ( N e. ZZ /\ D e. NN ) -> { z e. NN0 | ( z < D /\ D || ( N - z ) ) } = { ( iota_ z e. NN0 ( z < D /\ D || ( N - z ) ) ) } ) |
| 52 |
49 51
|
eqtr4d |
|- ( ( N e. ZZ /\ D e. NN ) -> { ( N mod D ) } = { z e. NN0 | ( z < D /\ D || ( N - z ) ) } ) |
| 53 |
52
|
eleq2d |
|- ( ( N e. ZZ /\ D e. NN ) -> ( R e. { ( N mod D ) } <-> R e. { z e. NN0 | ( z < D /\ D || ( N - z ) ) } ) ) |
| 54 |
6 53
|
bitrid |
|- ( ( N e. ZZ /\ D e. NN ) -> ( R = ( N mod D ) <-> R e. { z e. NN0 | ( z < D /\ D || ( N - z ) ) } ) ) |
| 55 |
|
breq1 |
|- ( z = R -> ( z < D <-> R < D ) ) |
| 56 |
|
oveq2 |
|- ( z = R -> ( N - z ) = ( N - R ) ) |
| 57 |
56
|
breq2d |
|- ( z = R -> ( D || ( N - z ) <-> D || ( N - R ) ) ) |
| 58 |
55 57
|
anbi12d |
|- ( z = R -> ( ( z < D /\ D || ( N - z ) ) <-> ( R < D /\ D || ( N - R ) ) ) ) |
| 59 |
58
|
elrab |
|- ( R e. { z e. NN0 | ( z < D /\ D || ( N - z ) ) } <-> ( R e. NN0 /\ ( R < D /\ D || ( N - R ) ) ) ) |
| 60 |
54 59
|
bitrdi |
|- ( ( N e. ZZ /\ D e. NN ) -> ( R = ( N mod D ) <-> ( R e. NN0 /\ ( R < D /\ D || ( N - R ) ) ) ) ) |