Description: The result of the mod operator satisfies the requirements for the remainder R in the division algorithm for a positive divisor. Variant of divalgmod . (Contributed by Stefan O'Rear, 17-Oct-2014) (Proof shortened by AV, 21-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | divalgmodcl | |- ( ( N e. ZZ /\ D e. NN /\ R e. NN0 ) -> ( R = ( N mod D ) <-> ( R < D /\ D || ( N - R ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divalgmod | |- ( ( N e. ZZ /\ D e. NN ) -> ( R = ( N mod D ) <-> ( R e. NN0 /\ ( R < D /\ D || ( N - R ) ) ) ) ) |
|
2 | 1 | baibd | |- ( ( ( N e. ZZ /\ D e. NN ) /\ R e. NN0 ) -> ( R = ( N mod D ) <-> ( R < D /\ D || ( N - R ) ) ) ) |
3 | 2 | 3impa | |- ( ( N e. ZZ /\ D e. NN /\ R e. NN0 ) -> ( R = ( N mod D ) <-> ( R < D /\ D || ( N - R ) ) ) ) |