Step |
Hyp |
Ref |
Expression |
1 |
|
reccl |
|- ( ( C e. CC /\ C =/= 0 ) -> ( 1 / C ) e. CC ) |
2 |
|
mulass |
|- ( ( A e. CC /\ B e. CC /\ ( 1 / C ) e. CC ) -> ( ( A x. B ) x. ( 1 / C ) ) = ( A x. ( B x. ( 1 / C ) ) ) ) |
3 |
1 2
|
syl3an3 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) x. ( 1 / C ) ) = ( A x. ( B x. ( 1 / C ) ) ) ) |
4 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
5 |
4
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. B ) e. CC ) |
6 |
|
simp3l |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
7 |
|
simp3r |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C =/= 0 ) |
8 |
|
divrec |
|- ( ( ( A x. B ) e. CC /\ C e. CC /\ C =/= 0 ) -> ( ( A x. B ) / C ) = ( ( A x. B ) x. ( 1 / C ) ) ) |
9 |
5 6 7 8
|
syl3anc |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( ( A x. B ) x. ( 1 / C ) ) ) |
10 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
11 |
|
divrec |
|- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( B / C ) = ( B x. ( 1 / C ) ) ) |
12 |
10 6 7 11
|
syl3anc |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) = ( B x. ( 1 / C ) ) ) |
13 |
12
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. ( B / C ) ) = ( A x. ( B x. ( 1 / C ) ) ) ) |
14 |
3 9 13
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( A x. ( B / C ) ) ) |