Description: A cancellation law for division. (Contributed by NM, 5-Jun-2004) (Revised by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | divcan1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) x. B ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcl | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
|
2 | simp2 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> B e. CC ) |
|
3 | 1 2 | mulcomd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) x. B ) = ( B x. ( A / B ) ) ) |
4 | divcan2 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. ( A / B ) ) = A ) |
|
5 | 3 4 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) x. B ) = A ) |