Description: A cancellation law for division. (Contributed by NM, 18-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divclz.1 | |- A e. CC | |
| divclz.2 | |- B e. CC | ||
| divcl.3 | |- B =/= 0 | ||
| Assertion | divcan1i | |- ( ( A / B ) x. B ) = A | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | divclz.1 | |- A e. CC | |
| 2 | divclz.2 | |- B e. CC | |
| 3 | divcl.3 | |- B =/= 0 | |
| 4 | 1 2 3 | divcli | |- ( A / B ) e. CC | 
| 5 | 1 2 3 | divcan2i | |- ( B x. ( A / B ) ) = A | 
| 6 | 2 4 5 | mulcomli | |- ( ( A / B ) x. B ) = A |