Description: A cancellation law for division. (Contributed by NM, 2-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divclz.1 | |- A e. CC |
|
| divclz.2 | |- B e. CC |
||
| Assertion | divcan1zi | |- ( B =/= 0 -> ( ( A / B ) x. B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divclz.1 | |- A e. CC |
|
| 2 | divclz.2 | |- B e. CC |
|
| 3 | divcan1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) x. B ) = A ) |
|
| 4 | 1 2 3 | mp3an12 | |- ( B =/= 0 -> ( ( A / B ) x. B ) = A ) |