Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( A / B ) = ( A / B ) |
2 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A e. CC ) |
3 |
|
divcl |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
4 |
|
3simpc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
5 |
|
divmul |
|- ( ( A e. CC /\ ( A / B ) e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) = ( A / B ) <-> ( B x. ( A / B ) ) = A ) ) |
6 |
2 3 4 5
|
syl3anc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) = ( A / B ) <-> ( B x. ( A / B ) ) = A ) ) |
7 |
1 6
|
mpbii |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. ( A / B ) ) = A ) |