| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( B x. A ) = ( B x. A ) |
| 2 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> B e. CC ) |
| 3 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A e. CC ) |
| 4 |
2 3
|
mulcld |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. A ) e. CC ) |
| 5 |
|
3simpc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
| 6 |
|
divmul |
|- ( ( ( B x. A ) e. CC /\ A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B x. A ) / B ) = A <-> ( B x. A ) = ( B x. A ) ) ) |
| 7 |
4 3 5 6
|
syl3anc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( ( B x. A ) / B ) = A <-> ( B x. A ) = ( B x. A ) ) ) |
| 8 |
1 7
|
mpbiri |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( B x. A ) / B ) = A ) |