Description: A cancellation law for division. (Eliminates a hypothesis of divcan3i with the weak deduction theorem.) (Contributed by NM, 3-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divclz.1 | |- A e. CC | |
| divclz.2 | |- B e. CC | ||
| Assertion | divcan3zi | |- ( B =/= 0 -> ( ( B x. A ) / B ) = A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | divclz.1 | |- A e. CC | |
| 2 | divclz.2 | |- B e. CC | |
| 3 | divcan3 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( B x. A ) / B ) = A ) | |
| 4 | 1 2 3 | mp3an12 | |- ( B =/= 0 -> ( ( B x. A ) / B ) = A ) |