Description: A cancellation law for division. (Contributed by NM, 8-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcan4 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A x. B ) / B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A x. B ) = ( B x. A ) ) |
| 3 | 2 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A x. B ) / B ) = ( ( B x. A ) / B ) ) |
| 4 | divcan3 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( B x. A ) / B ) = A ) |
|
| 5 | 3 4 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A x. B ) / B ) = A ) |