Metamath Proof Explorer


Theorem divcan4

Description: A cancellation law for division. (Contributed by NM, 8-Feb-2005)

Ref Expression
Assertion divcan4
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A x. B ) / B ) = A )

Proof

Step Hyp Ref Expression
1 mulcom
 |-  ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) )
2 1 3adant3
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A x. B ) = ( B x. A ) )
3 2 oveq1d
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A x. B ) / B ) = ( ( B x. A ) / B ) )
4 divcan3
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( B x. A ) / B ) = A )
5 3 4 eqtrd
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A x. B ) / B ) = A )