Step |
Hyp |
Ref |
Expression |
1 |
|
divid |
|- ( ( C e. CC /\ C =/= 0 ) -> ( C / C ) = 1 ) |
2 |
1
|
oveq1d |
|- ( ( C e. CC /\ C =/= 0 ) -> ( ( C / C ) x. ( A / B ) ) = ( 1 x. ( A / B ) ) ) |
3 |
2
|
3ad2ant3 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C / C ) x. ( A / B ) ) = ( 1 x. ( A / B ) ) ) |
4 |
|
simp3l |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
5 |
|
simp1 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) |
6 |
|
simp3 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C e. CC /\ C =/= 0 ) ) |
7 |
|
simp2 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( B e. CC /\ B =/= 0 ) ) |
8 |
|
divmuldiv |
|- ( ( ( C e. CC /\ A e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) ) -> ( ( C / C ) x. ( A / B ) ) = ( ( C x. A ) / ( C x. B ) ) ) |
9 |
4 5 6 7 8
|
syl22anc |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C / C ) x. ( A / B ) ) = ( ( C x. A ) / ( C x. B ) ) ) |
10 |
|
divcl |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
11 |
10
|
3expb |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) e. CC ) |
12 |
11
|
mulid2d |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 x. ( A / B ) ) = ( A / B ) ) |
13 |
12
|
3adant3 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( 1 x. ( A / B ) ) = ( A / B ) ) |
14 |
3 9 13
|
3eqtr3d |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) / ( C x. B ) ) = ( A / B ) ) |