Description: Cancellation of common factor in a ratio. (Contributed by Mario Carneiro, 1-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | div1d.1 | |- ( ph -> A e. CC ) |
|
| divcld.2 | |- ( ph -> B e. CC ) |
||
| divmuld.3 | |- ( ph -> C e. CC ) |
||
| divmuld.4 | |- ( ph -> B =/= 0 ) |
||
| divdiv23d.5 | |- ( ph -> C =/= 0 ) |
||
| Assertion | divcan5rd | |- ( ph -> ( ( A x. C ) / ( B x. C ) ) = ( A / B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div1d.1 | |- ( ph -> A e. CC ) |
|
| 2 | divcld.2 | |- ( ph -> B e. CC ) |
|
| 3 | divmuld.3 | |- ( ph -> C e. CC ) |
|
| 4 | divmuld.4 | |- ( ph -> B =/= 0 ) |
|
| 5 | divdiv23d.5 | |- ( ph -> C =/= 0 ) |
|
| 6 | 1 3 | mulcomd | |- ( ph -> ( A x. C ) = ( C x. A ) ) |
| 7 | 2 3 | mulcomd | |- ( ph -> ( B x. C ) = ( C x. B ) ) |
| 8 | 6 7 | oveq12d | |- ( ph -> ( ( A x. C ) / ( B x. C ) ) = ( ( C x. A ) / ( C x. B ) ) ) |
| 9 | 1 2 3 4 5 | divcan5d | |- ( ph -> ( ( C x. A ) / ( C x. B ) ) = ( A / B ) ) |
| 10 | 8 9 | eqtrd | |- ( ph -> ( ( A x. C ) / ( B x. C ) ) = ( A / B ) ) |