Metamath Proof Explorer


Theorem divcan5rd

Description: Cancellation of common factor in a ratio. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Hypotheses div1d.1
|- ( ph -> A e. CC )
divcld.2
|- ( ph -> B e. CC )
divmuld.3
|- ( ph -> C e. CC )
divmuld.4
|- ( ph -> B =/= 0 )
divdiv23d.5
|- ( ph -> C =/= 0 )
Assertion divcan5rd
|- ( ph -> ( ( A x. C ) / ( B x. C ) ) = ( A / B ) )

Proof

Step Hyp Ref Expression
1 div1d.1
 |-  ( ph -> A e. CC )
2 divcld.2
 |-  ( ph -> B e. CC )
3 divmuld.3
 |-  ( ph -> C e. CC )
4 divmuld.4
 |-  ( ph -> B =/= 0 )
5 divdiv23d.5
 |-  ( ph -> C =/= 0 )
6 1 3 mulcomd
 |-  ( ph -> ( A x. C ) = ( C x. A ) )
7 2 3 mulcomd
 |-  ( ph -> ( B x. C ) = ( C x. B ) )
8 6 7 oveq12d
 |-  ( ph -> ( ( A x. C ) / ( B x. C ) ) = ( ( C x. A ) / ( C x. B ) ) )
9 1 2 3 4 5 divcan5d
 |-  ( ph -> ( ( C x. A ) / ( C x. B ) ) = ( A / B ) )
10 8 9 eqtrd
 |-  ( ph -> ( ( A x. C ) / ( B x. C ) ) = ( A / B ) )