Step |
Hyp |
Ref |
Expression |
1 |
|
recdiv |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 / ( A / B ) ) = ( B / A ) ) |
2 |
1
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) x. ( 1 / ( A / B ) ) ) = ( ( A / B ) x. ( B / A ) ) ) |
3 |
|
divcl |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
4 |
3
|
3expb |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) e. CC ) |
5 |
4
|
adantlr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) e. CC ) |
6 |
|
divne0 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) =/= 0 ) |
7 |
|
recid |
|- ( ( ( A / B ) e. CC /\ ( A / B ) =/= 0 ) -> ( ( A / B ) x. ( 1 / ( A / B ) ) ) = 1 ) |
8 |
5 6 7
|
syl2anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) x. ( 1 / ( A / B ) ) ) = 1 ) |
9 |
2 8
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) x. ( B / A ) ) = 1 ) |